生物谷援引sciencedaily網(wǎng)站2007年12月26日報(bào)道,,蛋白質(zhì)特別的折疊類型決定了其功能,,這是一種動態(tài)過程,發(fā)生得非???。直到現(xiàn)在,對蛋白質(zhì)“跳舞”的研究一直忽視了其舞伴:水,。來自波鴻魯爾大學(xué),、伊利諾斯大學(xué)和內(nèi)華達(dá)大學(xué)的研究人員在馬丁.哈維尼斯.尼文教授的指導(dǎo)下使用太赫分光鏡對水和蛋白質(zhì)之間的相互作用進(jìn)行了觀測。
觀測使研究人員們首次證明了蛋白質(zhì)會對廣闊領(lǐng)域內(nèi)的周邊水網(wǎng)絡(luò)的運(yùn)動產(chǎn)生影響,。1000個水分子被一個蛋白質(zhì)拉成了一條直線:當(dāng)不靠近蛋白質(zhì)的時候這些水分子更像是一排沒有接受舞蹈動作設(shè)計(jì)的迪斯科舞者,,當(dāng)靠近一個蛋白質(zhì)時,這一排水分子看起來就像是正在跳米奴哀小步舞曲,。
被遺忘的舞伴
先前蛋白質(zhì)折疊研究的關(guān)注點(diǎn)僅僅只是蛋白質(zhì)結(jié)構(gòu)和側(cè)鏈的運(yùn)動情況,。哈維尼斯.尼文教授解釋到,“但是現(xiàn)在我們正假設(shè)水的快速運(yùn)動,,特別是與蛋白質(zhì)運(yùn)動一起的快速運(yùn)動扮演著重要角色,,因此蛋白質(zhì)折疊具有一個重要的功能。”一些基礎(chǔ)性問題還沒有得到解決:蛋白質(zhì)的影響有多大?當(dāng)兩個蛋白質(zhì)靠近時水分子的快速運(yùn)動會發(fā)生變化嗎,?
水吸收太赫放射線幫助研究人員得出研究結(jié)論
太赫高性能激光源技術(shù)的發(fā)展為該研究提供了全新的可能性:根據(jù)水的不同狀態(tài),,水將以其特有的方式吸收太赫射線,研究人員據(jù)此得出結(jié)論,。例如:當(dāng)溫度為開氏370度時(97攝氏度),僅有0.7%的放射線(頻率約為1.5太茲)穿透100微米厚的水層,。溫度變?yōu)?70開氏度時(零下3攝氏度),,有40%穿透。因此太赫放射線遠(yuǎn)比水透明,。原因在于時間,,水分子網(wǎng)絡(luò)在持續(xù)尋找自身的過程中伴隨有快速振動。這些振動持續(xù)時間還不到1皮秒(百億分之一秒),。振動是由水分子相互離開和旋轉(zhuǎn)引起的,。換成另外一種頻率的太赫放射線,冰凍水能夠像液態(tài)水一樣吸收放射線,。研究員以不同的水狀態(tài)對太赫頻率特征進(jìn)行了測量,。
蛋白質(zhì)向水發(fā)布指令
研究人員現(xiàn)在利用不同環(huán)境研究發(fā)現(xiàn),水網(wǎng)絡(luò)的振動不僅會隨溫度,,也會隨蛋白質(zhì)的距離發(fā)生變化,。馬丁.哈維尼斯.尼文教授稱,“我們可以此描述為一個蛋白質(zhì)將水分子帶到其附近,,并為其安排好運(yùn)動方式,。未受影響的水運(yùn)動類似于人們在迪斯科舞廳跳舞;與舞伴保持一種寬松的連接狀態(tài),,過一會兒后分開,。而蛋白質(zhì)附近的水跳舞就像是在跳米奴哀小步舞曲。運(yùn)動越同步,,最緊密舞伴之間的結(jié)合時間就會保持得更長,。”研究得出的結(jié)論就是,蛋白質(zhì)附近的水只允許少量太赫放射線穿透,。這一現(xiàn)象使研究人員可以直接觀測到蛋白質(zhì)對水的影響,。研究人員通過水吸收射線的數(shù)量來判定水的狀態(tài)。
影響距離
化學(xué)工程師宣布,,“基于我們的測量,,我們首次證明蛋白質(zhì)影響廣闊領(lǐng)域內(nèi)水網(wǎng)絡(luò)的快速運(yùn)動。”一個蛋白質(zhì)可以影響約1000個水分子,。這一影響距離可以測量的范圍是15至20埃(1埃=十分之一納米),,可以通過模擬預(yù)測,但是目前還不能通過實(shí)驗(yàn)進(jìn)行觀測。研究人員采用的測量方法證明,,影響可以觸及的距離超過了可以達(dá)到的結(jié)構(gòu)中的靜態(tài)變化區(qū)域(3埃),,比如本地密度的變化。哈維尼斯.尼文教授斷言,,“最后,,有待澄清的是水與蛋白質(zhì)之間的太赫舞在蛋白質(zhì)生物功能中所扮演的角色”。
英文原文鏈接參見:http://www.sciencedaily.com/releases/2007/12/071221224910.htm
Water molecules dance around a protein (in green). (Credit: Image courtesy of Ruhr-Universität-Bochum)
生物谷推薦原始出處:
Published online before print December 19, 2007, 10.1073/pnas.0709207104
PNAS | December 26, 2007 | vol. 104 | no. 52 | 20749-20752
BIOLOGICAL SCIENCES / CHEMISTRY
An extended dynamical hydration shell around proteins
Simon Ebbinghaus, Seung Joong Kim, Matthias Heyden, Xin Yu, Udo Heugen, Martin Gruebele,¶, David M. Leitner, and Martina Havenith,||
Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum, Germany; Department of Physics and ¶Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and Department of Chemistry, University of Nevada, Reno, NV 89557
Communicated by R. Stephen Berry, University of Chicago, Chicago, IL, October 3, 2007 (received for review April 11, 2007)
The focus in protein folding has been very much on the protein backbone and sidechains. However, hydration waters make comparable contributions to the structure and energy of proteins. The coupling between fast hydration dynamics and protein dynamics is considered to play an important role in protein folding. Fundamental questions of protein hydration include, how far out into the solvent does the influence of the biomolecule reach, how is the water affected, and how are the properties of the hydration water influenced by the separation between protein molecules in solution? We show here that Terahertz spectroscopy directly probes such solvation dynamics around proteins, and determines the width of the dynamical hydration layer. We also investigate the dependence of solvation dynamics on protein concentration. We observe an unexpected nonmonotonic trend in the measured terahertz absorbance of the five helix bundle protein 6–85* as a function of the protein: water molar ratio. The trend can be explained by overlapping solvation layers around the proteins. Molecular dynamics simulations indicate water dynamics in the solvation layer around one protein to be distinct from bulk water out to 10 Å. At higher protein concentrations such that solvation layers overlap, the calculated absorption spectrum varies nonmonotonically, qualitatively consistent with the experimental observations. The experimental data suggest an influence on the correlated water network motion beyond 20 Å, greater than the pure structural correlation length usually observed.
solvation dynamics | THz spectroscopy | lambda repressor | molecular modeling