生物谷報道:加州大學伯克利分校的科學家3日在《美國科學院院刊》發(fā)表論文稱通過添加維生素或微量元素可激活DNA修復機制,。使用這種方法將修復解決遺傳基因的一些初級缺陷,恢復一些DNA中的活性酶,,將有助于人類基因組的研究,。
科學家們在20年的研究過程中,首次發(fā)現(xiàn)簡單的維生素有助于增強一些遺傳基因中重要的酶的活性,,修補一些酶的工作秩序,。研究表明維生素可以“治療”許多稀有和潛在的致命代謝缺陷所造成的基因突變的關鍵酶。這些遺傳性的基因缺陷疾病,,都具有兩個副本的等位基因和一個必不可少的關鍵酶,。由于關鍵酶的作用,基因可能只有一個有缺陷,或是兩個副本都有缺陷,,而這種方法將一些微量補充的維生素對這些關鍵酶造成微妙影響,,修補缺陷或?qū)⑵涮蕴?nbsp;
研究人員確信在特定維生素的作用下,一些遺傳基因缺陷疾病有很大的變化,。某些酶的功能,,都能恢復正常的活力。研究人員以把人類基因變異移植到酵母細胞,,以測試維生素對酶的功能,。科學家可以準確地評估,,這種新方法是否可以徹底改變?nèi)祟惖拿婷?。他們的研究獲得了國防高級研究計劃局( DARPA )和美國軍隊的支持,用于使用這種新方法創(chuàng)造無敵的超級士兵,。通過修補人類基因組中的缺陷,,制造完美的人類。“我們的士兵可以像頂尖運動員那樣,,獲得持久的耐力和體力,,甚至可以像蠑螈一樣再生肢體。 ” 據(jù)加州大學伯克利分校的賈思波·拉恩稱,,美國軍方的目的十分明確,,就是要通過這種方法,修改士兵的個人基因組,,打造完美無敵的超級戰(zhàn)士,。
同時,加州大學伯克利分校的科學家們發(fā)現(xiàn)在人體中有種酶叫亞甲基四氫葉酸還原酶(MTHFR),。這種“變種”酶可以使維生素B正常工作,,在合成DNA所需的核苷酸中起重要作用。一些治療癌癥的藥物如甲氨蝶呤,,就是采取此酶來阻斷DNA的合成來控制癌細胞增長,。科學家們在研究中使用的DNA樣本來自564個人和種族,,在其中他們發(fā)現(xiàn)三種常見變異的酶,。研究人員發(fā)現(xiàn),實際上有4種不同的變異的酶對基因突變產(chǎn)生影響,。為此研究人員認為,,對于這4中酶造成的基因突變還需要補充葉酸,可以幫助恢復全部功能,,調(diào)整這些酶在基因組中的活動和作用,。而對于打造完美無敵的超級戰(zhàn)士,,科學家認為目前還需要對60000多的基因突變樣本進行分析,從而利用這種新方法對癥下藥,。(生物谷www.bioon.com)
生物谷推薦原始出處:
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0802813105
The prevalence of folate-remedial MTHFR enzyme variants in humans
Nicholas J. Marini*,, Jennifer Gin*, Janet Ziegle, Kathryn Hunkapiller Keho, David Ginzinger,, Dennis A. Gilbert, and Jasper Rine*,
*Department of Molecular and Cellular Biology, California Institute for Quantitative Biosciences, Stanley Hall, University of California, Berkeley, CA 94720-3220; and Applied Biosystems, Inc., 850 Lincoln Centre Drive, Foster City, CA 94404
Communicated by Bruce N. Ames, University of California, Berkeley, CA, March 24, 2008 (received for review November 20, 2007)
Abstract
Studies of rare, inborn metabolic diseases establish that the phenotypes of some mutations in vitamin-dependent enzymes can be suppressed by supplementation of the cognate vitamin, which restores function of the defective enzyme. To determine whether polymorphisms exist that more subtly affect enzymes yet are augmentable in the same way, we sequenced the coding region of a prototypical vitamin-dependent enzyme, methylenetetrahydrofolate reductase (MTHFR), from 564 individuals of diverse ethnicities. All nonsynonymous changes were evaluated in functional in vivo assays in Saccharomyces cerevisiae to identify enzymatic defects and folate remediability of impaired alleles. We identified 14 nonsynonymous changes: 11 alleles with minor allele frequencies <1% and 3 common alleles (A222V, E429A, and R594Q). Four of 11 low-frequency alleles affected enzyme function, as did A222V. Of the five impaired alleles, four could be restored to normal functionality by elevating intracellular folate levels. All five impaired alleles mapped to the N-terminal catalytic domain of the enzyme, whereas changes in the C-terminal regulatory domain had little effect on activity. Impaired activity correlated with the phosphorylation state of MTHFR, with more severe mutations resulting in lower abundance of the phosphorylated protein. Significantly, diploid yeast heterozygous for mutant alleles were impaired for growth, particularly with lower folate supplementation. These results suggested that multiple less-frequent alleles, in aggregate, might significantly contribute to metabolic dysfunction. Furthermore, vitamin remediation of mutant enzymes may be a common phenomenon in certain domains of proteins.