(封面圖片:磷脂酶C(藍(lán)色結(jié)構(gòu))被連接TIM barrel兩個部分的一個環(huán)狀結(jié)構(gòu)(紫紅色結(jié)構(gòu))阻礙。而磷脂酶活性的自抑制過程會得到Rho GTPases和異源三聚體G蛋白的減緩,,它們激活的PLC-β2將通過活性中心取代起到阻礙作用的環(huán)狀結(jié)構(gòu),,從而使得磷脂酶C能與底物-磷脂酰肌醇(黃色結(jié)構(gòu))結(jié)合。)
磷脂酶C(phospholipase C,,PLC)是一類可以催化磷脂C的磷脂酰鍵水解斷裂的酶,PLC在生物的生命活動中起著第二信使的作用,,其廣泛存在于各種原核,、真核生物之中,,只是在分子結(jié)構(gòu)上略有差異。PLC的同工酶直接由異源三聚體G蛋白(heterotrimeric G protein)和Ras-like GTPases蛋白激發(fā),,從而將磷脂酰肌醇二磷酸(phosphatidylinositol 4,5-bisphosphate)水解成為第二信使甘油二酯(diacylglycerol)以及肌醇三磷酸(inositol 1,4,5-trisphosphate)。G蛋白在TCR/CD3與磷脂酶C的結(jié)合過程中起著重要的調(diào)節(jié)作用,,通過G蛋白可以使得PLC發(fā)生活化,,從而激活磷脂酰肌醇代謝途徑,。
盡管PLC在多種信號級聯(lián)放大過程中都起著主導(dǎo)作用,但是PLC激活過程中的分子學(xué)機制目前尚不清楚,。在2008年8月8日出版的《分子細(xì)胞》(Molecular Cell)上,,來自美國北卡羅來納大學(xué)醫(yī)學(xué)院的一組科學(xué)家發(fā)表了他們的最新研究結(jié)果,。文章稱,,PLC的活性中心受到一個連接TIM-barrel蛋白兩個部分的環(huán)狀結(jié)構(gòu)的阻礙。而去除這個結(jié)構(gòu)能組成性激活(constitutively activate)PLC-β2,,與此同時也并不會消除其被經(jīng)典G蛋白調(diào)節(jié)子進(jìn)一步激發(fā)的能力。
磷脂酶活性的自抑制過程會得到Rho GTPases和異源三聚體G蛋白的減緩,,它們激活的PLC-β2將以活性中心取代起到阻礙作用的環(huán)狀結(jié)構(gòu),,從而使得PLC能與底物-磷脂酰肌醇(PtdIns(4,,5)P2)結(jié)合。而類似的調(diào)節(jié)過程也會發(fā)生于其它的PLC蛋白中,,在文章中,,科學(xué)家提出了一種膜界面活化過程的普遍機制,,這為PLC的各種激活過程提供了一個統(tǒng)一的框架,。(生物谷Bioon.com)
生物谷推薦原始出處:
Molecular Cell,,Vol 31, 383-394, 08 August 2008,Stephanie N. Hicks, John Sondek
General and Versatile Autoinhibition of PLC Isozymes
Stephanie N. Hicks,1 Mark R. Jezyk,1,4 Svetlana Gershburg,1 Jason P. Seifert,1 T. Kendall Harden,1,2 and John Sondek1,2,3,
1 Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
2 Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
3 Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
Summary
Phospholipase C (PLC) isozymes are directly activated by heterotrimeric G proteins and Ras-like GTPases to hydrolyze phosphatidylinositol 4,5-bisphosphate into the second messengers diacylglycerol and inositol 1,4,5-trisphosphate. Although PLCs play central roles in myriad signaling cascades, the molecular details of their activation remain poorly understood. As described here, the crystal structure of PLC-β2 illustrates occlusion of the active site by a loop separating the two halves of the catalytic TIM barrel. Removal of this insertion constitutively activates PLC-β2 without ablating its capacity to be further stimulated by classical G protein modulators. Similar regulation occurs in other PLC members, and a general mechanism of interfacial activation at membranes is presented that provides a unifying framework for PLC activation by diverse stimuli.