各物種基因組圖譜陸續(xù)繪制成功后我們發(fā)現(xiàn),,人類與其他低等物種間基因組序列差別并不是想象中那樣巨大。 因此,,科學(xué)家將目光逐漸轉(zhuǎn)向了RNA,,RNA選擇剪接機(jī)制可以使一個(gè)DNA序列表達(dá)出不同蛋白質(zhì),大大增加了基因表達(dá)多樣性和復(fù)雜性的儲(chǔ)量,。在活細(xì)胞中研究RNA的調(diào)節(jié)一直沒(méi)有很好的方法,,所以RNA調(diào)節(jié)的研究也處于困境。不過(guò),,現(xiàn)在這一困境被美國(guó)科學(xué)家Robert B. Darnell帶領(lǐng)的研究小組打破了,。
通過(guò)改良試管中的主流技術(shù),結(jié)合高通量技術(shù),,研究小組開(kāi)發(fā)出一個(gè)新技術(shù)觀測(cè)活細(xì)胞中特定的蛋白是如何調(diào)控RNA的,。該技術(shù)可以讓研究人員在一次實(shí)驗(yàn)中鑒定出每條RNA鏈的每一段序列所結(jié)合的蛋白。實(shí)驗(yàn)結(jié)果能準(zhǔn)確判斷出不同物種間RNA組差異,。
研究人員稱,,相對(duì)于有嚴(yán)格拷貝數(shù)限制的DNA序列,RNA提供了一種使細(xì)胞變得更加復(fù)雜的途徑,,但是,,不同的條件、疾病,、細(xì)胞類型中,,RNA是如何被調(diào)控一直難以發(fā)現(xiàn)。通過(guò)這一技術(shù),,現(xiàn)在我們就有辦法來(lái)解答所有這些問(wèn)題,。
從活體組織中抽提蛋白-RNA復(fù)合物,傳統(tǒng)方法是使用分子,,但經(jīng)常提取的只是RNA,,或者是不需要的殘留復(fù)合物,因?yàn)榻Y(jié)合的蛋白太不穩(wěn)固以致在純化過(guò)程中就從(蛋白-RNA)復(fù)合物中脫落下來(lái),。為了解決這個(gè)問(wèn)題,,Darnell和他的團(tuán)隊(duì)從試管生化反應(yīng)得到靈感——當(dāng)這些調(diào)節(jié)蛋白結(jié)合到RNA上的那一刻立即使用分子粘合劑!這一方法應(yīng)用到高通量測(cè)序就叫高通量測(cè)序-交聯(lián)免疫沉淀,簡(jiǎn)稱HITS-CLIP,。
既然RNA和RNA結(jié)合蛋白融合在一起,,研究人員就可以在劇烈的蛋白純化過(guò)程中而真的不用擔(dān)心攪拌抽提物丟失RNA,最后,,只剩下結(jié)合蛋白的RNA片段,,然后這些片段被送到洛克菲勒進(jìn)行高通量測(cè)序,在RSSSD的幫助下,,這些序列與基因組比對(duì),,找出匹配的片段,最終拼出每個(gè)轉(zhuǎn)錄出的RNA的蛋白結(jié)合序列的全景圖,。
通過(guò)利用這一技術(shù),,研究小組發(fā)現(xiàn)神經(jīng)元中特有的RNA結(jié)合蛋白Nova2結(jié)合RNA的位點(diǎn),并預(yù)測(cè)出RNA的轉(zhuǎn)錄結(jié)果及產(chǎn)生的蛋白質(zhì)序列,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature 456, 464-469 (27 November 2008) | doi:10.1038/nature07488
HITS-CLIP yields genome-wide insights into brain alternative RNA processing
Donny D. Licatalosi1, Aldo Mele1, John J. Fak1, Jernej Ule3, Melis Kayikci3, Sung Wook Chi1, Tyson A. Clark4, Anthony C. Schweitzer4, John E. Blume4, Xuning Wang2, Jennifer C. Darnell1 & Robert B. Darnell1
1 Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute,
2 Biocomputing, Information Technology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
3 MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
4 Expression Research, Affymetrix, Inc., Santa Clara, California 95051, USA
Protein–RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein–RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova–RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein–RNA interactions in vivo.