男性不育癥是一種男性常見疾病,在美國每年有百萬的男性患病,。不能生成精子是男性不育癥的常見因素之一,。近日賓夕凡尼亞州大學(xué)醫(yī)學(xué)院的研究者利用酵母作為生物體模型對男性不育癥的分子機(jī)制進(jìn)行了研究。
由于酵母孢子的形成過程與哺乳動物精子的形成過程非常相似,,賓夕法尼亞大學(xué)醫(yī)學(xué)院教授,,表觀遺傳學(xué)計劃的負(fù)責(zé)人Shelley Berger博士和Jér?me Govin博士以及法國國家衛(wèi)生研究所的Saadi Khochbin選擇酵母作為生物體模型進(jìn)行研究,。他們對酵母進(jìn)行了篩選試圖找到不能生成孢子的突變體,。他們的最終目的是揭示生殖細(xì)胞(配子)形成過程中表觀遺傳學(xué)對基因表達(dá)調(diào)控的機(jī)制。在研究中他們發(fā)現(xiàn)有幾個蛋白的位點在精子和卵子形成過程中起重要表觀調(diào)控作用,。這幾個對配子形成起關(guān)鍵作用的蛋白可能成為人類男性不育癥的重要生物標(biāo)記,。他們的研究成果發(fā)表在本月的《Genes and Development》雜志上,。
表觀遺傳是指并非通過DNA序列,而是通過一種比遺傳突變更精細(xì)的機(jī)制影響細(xì)胞表達(dá)蛋白的功能而影響生物體遺傳,。表觀遺傳因子并不會改變密碼子的閱讀,,而是用一種類似開關(guān)的機(jī)制對表達(dá)的高低進(jìn)行調(diào)控。
精子和卵子形成受到嚴(yán)格的表觀遺傳調(diào)控,。人類精子和卵子(配子)只包含23條染色體即親代體細(xì)胞一半的染色體,,配子形成的過程是通過一種特殊的細(xì)胞分裂——減數(shù)分裂實現(xiàn)的,細(xì)胞減數(shù)分裂過程受到嚴(yán)格的分子調(diào)控,。那么表觀遺傳因子是如何在這一過程中發(fā)揮作用的呢,?
在研究初期,Berger, Govin和他們的同事們發(fā)現(xiàn)在孢子形成缺陷的酵母中存在著組蛋白H3和組蛋白H4的突變,。
細(xì)胞中的DNA并不是自由漂浮的相互纏繞的線團(tuán),,它緊密地纏繞著蛋白聚合體。這些蛋白聚合體是由組蛋白構(gòu)成的,,當(dāng)DNA與這些蛋白聚合體的纏繞發(fā)生松緊變化時就會影響基因表達(dá),。Berger和他的研究小組對酵母突變體進(jìn)行了超過一百次的測試從而確定了組蛋白修飾是配子形成的關(guān)鍵因素。
Berger和Govin分析證實組蛋白H3和H4位點變化是非常重要的影響因素,。研究小組發(fā)現(xiàn)組蛋白3的第11個蘇氨酸位點是一個關(guān)鍵的修飾位點,,該位點磷酸化是完整的減數(shù)分裂所必需的。研究者還發(fā)現(xiàn)組蛋白H4的三個賴氨酸的乙?;沟萌旧wDNA有效壓縮進(jìn)成熟的孢子,。研究小組證實在老鼠配子形成過程同樣發(fā)生了這些修飾,并鑒定了可“讀寫”這些修飾一些候選蛋白,。
Berger認(rèn)為他們的研究有著非常重要的意義,。第一,他們建立了一種篩選方法鑒定精子或卵子形成過程中的表觀遺傳學(xué)改變,。Govin正應(yīng)用這種模式對其他組蛋白進(jìn)行研究,。第二,它證實了酵母孢子的形成與哺乳動物配子形成的機(jī)制非常相似,,突破了對小鼠進(jìn)行遺傳篩選的固有的技術(shù)障礙,。最后,假定這些表觀遺傳學(xué)標(biāo)記物同樣在人類存在,,并與人類標(biāo)記物功能相似,。這個研究確定了人類男性不育癥的可能的生物標(biāo)記。
“幾乎可以肯定某些不育癥與表觀遺傳學(xué)相關(guān),。”Govin說
Berger認(rèn)為如果在進(jìn)化過程配子形成是保守的,,那么在研究中發(fā)現(xiàn)組蛋白的修飾有可能只是冰山一角。“我們將會找到新的染色質(zhì)調(diào)控機(jī)制,,并且證實這些機(jī)制在酵母及小鼠中都是保守的,。”Berger預(yù)測說,。(生物谷Bioon.com)
生物谷推薦原文出處:
Genes Dev. doi:10.1101/gad.1954910
Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis
Jér?me Govin1, Jean Dorsey1, Jonathan Gaucher2,3, Sophie Rousseaux2,3, Saadi Khochbin2,3 and Shelley L. Berger1,4,5,6
1Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
2INSERM, U823, Grenoble, Cedex 9, France;
3Université Joseph Fourier, Institut Albert Bonniot, Grenoble, Cedex 9, France;
4Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
5Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Abstract
Profound epigenetic differences exist between genomes derived from male and female gametes; however, the nature of these changes remains largely unknown. We undertook a systematic investigation of chromatin reorganization during gametogenesis, using the model eukaryote Saccharomyces cerevisiae to examine sporulation, which has strong similarities with higher eukaryotic spermatogenesis. We established a mutational screen of histones H3 and H4 to uncover substitutions that reduce sporulation efficiency. We discovered two patches of residues—one on H3 and a second on H4—that are crucial for sporulation but not critical for mitotic growth, and likely comprise interactive nucleosomal surfaces. Furthermore, we identified novel histone post-translational modifications that mark the chromatin reorganization process during sporulation. First, phosphorylation of H3T11 appears to be a key modification during meiosis, and requires the meiotic-specific kinase Mek1. Second, H4 undergoes amino tail acetylation at Lys 5, Lys 8, and Lys 12, and these are synergistically important for post-meiotic chromatin compaction, occurring subsequent to the post-meiotic transient peak in phosphorylation at H4S1, and crucial for recruitment of Bdf1, a bromodomain protein, to chromatin in mature spores. Strikingly, the presence and temporal succession of the new H3 and H4 modifications are detected during mouse spermatogenesis, indicating that they are conserved through evolution. Thus, our results show that investigation of gametogenesis in yeast provides novel insights into chromatin dynamics, which are potentially relevant to epigenetic modulation of the mammalian process.