為了阻止腫瘤生長蔓延,,科學(xué)家們不斷從各個途徑不懈努力,。美國科學(xué)促進(jìn)會,、英國《自然》雜志網(wǎng)站近日報道,,美國達(dá)那·法博癌癥研究所一個國際聯(lián)合研究小組研制了一種分子,能讓控制癌癥的基因指令失效,,從根本上抑制了癌癥腫瘤的生長,。
癌癥基因研究最新進(jìn)展:
PLoS One:可阻斷癌癥基因的小分子化合物
Gene & Development:可破壞腫瘤抑制基因的小RNA
Nature:細(xì)胞PTEN基因缺失會促進(jìn)腫瘤生長
Nature Genetics :多種基因能夠延緩衰老并抑制腫瘤
PNAS:基因甲基化可預(yù)測癌癥
生物谷近期腫瘤會議推薦:
第一屆腫瘤基礎(chǔ)和轉(zhuǎn)化醫(yī)學(xué)國際研討會.上海.10.12-15
新研究演示了一種蛋白質(zhì)能向癌癥基因發(fā)出“停止”和“開始”命令,,這種蛋白就是表觀基因“閱讀”蛋白,,也正是今后癌癥治療所瞄準(zhǔn)的目標(biāo),。
最近幾年,,控制癌癥基因行為的研究有了很大發(fā)展,,用控制基因開關(guān)的方法治療癌癥效果明顯,。論文主要作者,、達(dá)那·法博癌癥研究所詹姆斯·布雷德納說,,如果能關(guān)掉一個癌細(xì)胞的生長基因,細(xì)胞就會死亡,。相反,,如果打開一個正常組織基因,會讓癌細(xì)胞變成正常的組織細(xì)胞,。
他們研究的是一種罕見卻極具侵襲性的癌癥,,即兒童與青年睪丸核蛋白中線癌(NMC),,這是一種完全由基因特征來定義的疾病——BRD4-NUT基因易位。這種癌癥很頑固,,常在胸部,、頭、頸等沿著身體豎直中線部位發(fā)生,,臨床中尚無有效治療方法,。化療只在短期內(nèi)有效,,最終無法阻止腫瘤蔓延,。
NMC癌癥是由染色體“換位”引起,兩個來自不同染色體的基因連接在一起,,這種異常的合并蛋白稱為BRD4-NUT,。
細(xì)胞中的基因指令就像是一種“書簽”,染色質(zhì)基板上的表觀基因?yàn)?ldquo;書寫”蛋白,,另一組表觀基因好比橡皮擦,,稱為“抹擦”蛋白,能清除書簽,。而第三種表觀基因蛋白,,是一種能“閱讀”指令“書簽”的蛋白,從而控制基因開關(guān),,這正是研究人員瞄準(zhǔn)的目標(biāo),。
有科學(xué)文獻(xiàn)上指出,某些鎮(zhèn)定類的藥物如安定(Valium),、阿普唑倉(Xanax)和絡(luò)艾塞半(Ativan)等,,能降低BRD4的效力。以此為線索,,布雷德納和另一位研究者齊軍(音譯)開發(fā)出一系列分子,,并觀察它們能否抑制BRD4-NUT基因中的“閱讀”蛋白。
結(jié)果,,有一種組合分子做到了這一點(diǎn),,研究人員將其命名為JQ1。這種組裝分子是一套組裝起來的“表觀基因組”,,能影響細(xì)胞的多層機(jī)制,,從而控制基因行為。它兼具兩種功能:一是鎖住NMC癌細(xì)胞中的異常蛋白,,二是讓它們停止分化復(fù)制,,“忘記”自己癌細(xì)胞的身份,逐漸恢復(fù)成正常細(xì)胞的樣子。
他們從病人身上移植了NMC癌細(xì)胞到實(shí)驗(yàn)室小鼠身上,,并給一些小鼠使用了JQ1分子,。布雷德納說,效果非常明顯,,所有接受了JQ1分子治療的小鼠都活了下來,,而沒用JQ1的都死了。
目前,,齊軍及其團(tuán)隊正在扭轉(zhuǎn)分子形狀,,以發(fā)揮其最大功效。布雷德納還指出,,由于能傳送選擇性分子給致癌蛋白,,讓它們停止癌癥程序,這就把副作用降到了最低,。開發(fā)JQ1或此類分子藥物,,可能會產(chǎn)生第一個專為NMC病人設(shè)計的個體化治療,也將為抗癌治療帶來一種新方法,。(生物谷Bioon.com)
生物谷推薦英文摘要:
Nature doi:10.1038/nature09504
Selective inhibition of BET bromodomains
Panagis Filippakopoulos1,10, Jun Qi2,10, Sarah Picaud1,10, Yao Shen3, William B. Smith2, Oleg Fedorov1, Elizabeth M. Morse2, Tracey Keates1, Tyler T. Hickman4, Ildiko Felletar1, Martin Philpott1, Shonagh Munro5, Michael R. McKeown2,6, Yuchuan Wang7, Amanda L. Christie8, Nathan West2, Michael J. Cameron4, Brian Schwartz4, Tom D. Heightman1, Nicholas La Thangue5, Christopher A. French4, Olaf Wiest3, Andrew L. Kung8,9, Stefan Knapp1,5 & James E. Bradner2,6
1Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
2Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
3Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
4Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
5Department of Clinical Pharmacology, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
6Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
7Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
8Lurie Family Imaging Center, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
9Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children’s Hospital, Boston, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA
Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic ‘writers’ and ‘erasers’. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein–protein interactions of epigenetic ‘readers’, and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.