2011年1月27日,北京生命科學研究所葉克窮實驗室在《自然》雜志發(fā)表論文,,該論文研究了C/D RNA蛋白質復合物催化RNA核糖甲基化的結構機理。
C/D RNA是普遍存在于真核生物和古細菌的一類古老的非編碼RNA,,它們主要介導核糖體RNA和剪切體RNA大量特定位點上的核糖甲基化修飾,,同時參與真核生物核糖體的裝配。在古細菌中,,C/D RNA和甲基轉移酶fibrillarin,,RNA結合蛋白L7Ae和骨架蛋白Nop5形成復合物。C/D RNA能和修飾位點兩邊的堿基序列互補配對,,而實現(xiàn)對底物的特異性選擇,。雖然對這個復合物的結構已經(jīng)有較多研究,但二個基本問題仍然沒有解決,。首先C/D RNA是如何和蛋白質組裝形成復合物的,?其中經(jīng)典的模型認為一條C/D RNA和兩套蛋白結合形成所謂的“單體”結構,但是最近的研究認為兩條C/D RNA和四套蛋白結合形成 “交叉雙體”結構,。第二個問題是C/D RNA如何指導甲基轉移酶選擇特定的修飾位點,?
該論文報道了一個加載了底物的完整C/D RNA蛋白質復合物的3.15埃晶體結構,。其中晶體X光衍射數(shù)據(jù)在上海光源生物大分子晶體學線站BL17U搜集。該結構首次顯示了這個復雜分子機器的整體組裝方式,,為“單體”模型提供了直接的證據(jù),。這個結構還清楚的顯示了底物RNA的結合方式和催化亞基選擇特定修飾位點的方式。作者還發(fā)現(xiàn),,為了形成催化所需的活性狀態(tài),,底物的加載誘發(fā)了復合物內部結構發(fā)生廣泛的變化。
葉克窮實驗室之前還詳細研究了另一類催化假尿嘧啶形成的H/ACA RNA蛋白質復合物的結構,。隨著C/D RNA蛋白質復合物結構的解析,,我們對生物體內兩大類參與RNA修飾的復合物的工作原理均得到了在原子水平的認識。
論文的第一作者是我所林金鐘博士,,另外賴少梅,、徐安畢、賈茹,、張麗漫和盧靜等人也參與了此研究工作,。葉克窮博士為本文通訊作者。此項研究為科技部和北京市科委資助課題,,在北京生命科學研究所完成,。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09688
Structural basis for site-specific ribose methylation by box C/D RNA protein complexes
Jinzhong Lin,Shaomei Lai,Ru Jia,Anbi Xu,Liman Zhang,Jing Lu& Keqiong Ye
Box C/D RNA protein complexes (RNPs) direct site-specific 2′-O-methylation of RNA and ribosome assembly1, 2, 3, 4. The guide RNA in C/D RNP forms base pairs with complementary substrates and selects the modification site using a molecular ruler5, 6, 7. Despite many studies of C/D RNP structure8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, the fundamental questions of how C/D RNAs assemble into RNPs and how they guide modification remain unresolved. Here we report the crystal structure of an entire catalytically active archaeal C/D RNP consisting of a bipartite C/D RNA associated with two substrates and two copies each of Nop5, L7Ae and fibrillarin at 3.15-? resolution. The substrate pairs with the second through the eleventh nucleotide of the 12-nucleotide guide, and the resultant duplex is bracketed in a channel with flexible ends. The methyltransferase fibrillarin binds to an undistorted A-form structure of the guide–substrate duplex and specifically loads the target ribose into the active site. Because interaction with the RNA duplex alone does not determine the site specificity, fibrillarin is further positioned by non-specific and specific protein interactions. Compared with the structure of the inactive C/D RNP, extensive domain movements are induced by substrate loading. Our results reveal the organization of a monomeric C/D RNP and the mechanism underlying its site-specific methylation activity.