近日來(lái)自文安德研究所(Van Andel,,VARI)的科學(xué)家們?cè)谛卵芯恐薪馕隽艘环N孤核受體TR4的結(jié)構(gòu)和功能,,研究結(jié)果揭示維生素A在機(jī)體的某些生理功能包括精子形成及中樞神經(jīng)系統(tǒng)發(fā)育中可能發(fā)揮了比原來(lái)預(yù)想的更為直接的作用。這一研究成果被選為“封面故事”發(fā)布在著名期刊《生物化學(xué)雜志》(Journal of Biological Chemistry)上,。
維生素A學(xué)名為視黃醇,,是最早被人類發(fā)生的維生素種類。盡管科學(xué)家們?cè)谶^(guò)去的研究中證實(shí)維生素A衍生物例如視黃醛和維甲酸參與了人體多種生理功能,,然而一直以來(lái)對(duì)于維生素A直接參與影響核受體信號(hào)途徑的機(jī)制并不清楚。
“我們的研究證實(shí)維生素A具有激活孤核受體TR4的活性,,”文安德研究所的科學(xué)家Edward Zhou博士說(shuō),。
核受體是細(xì)胞具有轉(zhuǎn)錄因子活性的蛋白分子。過(guò)去的研究證實(shí)核受體超家族的成員在細(xì)胞生長(zhǎng),、發(fā)育,、分化與新城代謝等重要生理過(guò)程中發(fā)揮關(guān)鍵性的作用。孤核受體是一類沒有配體或尚未發(fā)現(xiàn)配體的特殊的受體,。人類有數(shù)十種孤核受體亞家族廣泛分布在機(jī)體各組織中,。近年來(lái)大量的研究表明孤核受體TR4在精子發(fā)生、脂質(zhì)和脂蛋白調(diào)控以及中樞神經(jīng)系統(tǒng)發(fā)育中發(fā)揮著重要的作用,。
在這篇文章中,,Edward Zhou和文安德研究所結(jié)構(gòu)科學(xué)實(shí)驗(yàn)室的同事們?cè)诮Y(jié)構(gòu)生物學(xué)和藥物篩查中心主任徐華強(qiáng)(H. Eric Xu)的指導(dǎo)下,利用X射線晶體學(xué)技術(shù)確定了TR4配體結(jié)合域的結(jié)構(gòu),。此外,,研究人員證實(shí)TR4對(duì)多種啟動(dòng)子顯示了組成性的轉(zhuǎn)錄活性,并且這一效應(yīng)還可通過(guò)核受體共活化物進(jìn)一步增強(qiáng),。當(dāng)研究人員通過(guò)突變破壞輔助因子的結(jié)合,、二聚化作用或配體結(jié)合證實(shí)可抑制TR4受體的轉(zhuǎn)錄活性。在這一研究中,,他們還證實(shí)維生素A及維甲酸均能促進(jìn)TR4招募共活化物從而進(jìn)一步地促進(jìn)激活TR4調(diào)控的啟動(dòng)子,。
“近期的研究數(shù)據(jù)表明孤核受體在人體多種重要的生理功能中發(fā)揮關(guān)鍵性的作用,被科學(xué)家們廣泛用于尋找人類疾病的藥物靶標(biāo),,”Edward Zhou說(shuō):“此外,,鑒別核受體的配體也有助于研究人員開發(fā)人類疾病的新型治療藥物。其中一個(gè)非常成功的離子就是過(guò)氧化體增殖劑激活的受體(PPARs),,目前人們利用這類受體的配體用于糖尿病的治療,。新研究結(jié)果為我們提供了一些新的潛在藥物靶點(diǎn),。”
“因?yàn)門R4在精子形成、脂質(zhì)和脂蛋白調(diào)控,、中樞神經(jīng)系統(tǒng)發(fā)育以及胚胎中血紅蛋白生成調(diào)控中均發(fā)揮著重要的作用,,由此我們推論出維生素A在人體中具有比我們?cè)瓉?lái)所知道的還要重要的功能。”Edward Zhou說(shuō),。(生物谷Bioon.com)
生物谷推薦原文出處:
The Journal of Biological Chemistry, doi: 10.1074/jbc.M110.168740
The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor*?
X. Edward Zhou?,1, Kelly M. Suino-Powell?, Yong Xu?, Cee-Wah Chan?, Osamu Tanabe§, Schoen W. Kruse?,2, Ross Reynolds??, James Douglas Engel§ and H. Eric Xu?,3
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.