線粒體就像生物體內(nèi)的電池,,為幾乎所有細(xì)胞供應(yīng)能量,而支持這一供能過程的分子機(jī)制一直是個(gè)謎,。據(jù)美國物理學(xué)家組織網(wǎng)6月20日(北京時(shí)間)報(bào)道,,哈佛大學(xué)醫(yī)學(xué)院和馬薩諸塞綜合醫(yī)院研究人員通過查閱人類基因組項(xiàng)目數(shù)據(jù)庫資料并結(jié)合實(shí)驗(yàn)分析,終于發(fā)現(xiàn)了驅(qū)動(dòng)線粒體鈣通道機(jī)制的關(guān)鍵蛋白,。該發(fā)現(xiàn)發(fā)表在6月19日出版的《自然》雜志上,。
鈣通道是專門針對鈣離子的膜通道。生物體中的鈣含量與許多最基本的生物過程密切相關(guān),,也和神經(jīng)退行性疾病,、糖尿病等的疾病環(huán)境有關(guān)。半個(gè)世紀(jì)以來,,人們用生理和生物物理學(xué)的方法來研究鈣通道,,未能找到它的分子基礎(chǔ)。
哈佛大學(xué)醫(yī)學(xué)院系統(tǒng)生物學(xué)副教授范思·穆薩和同事研究線粒體已經(jīng)長達(dá)10年,。2008年,,他們曾鑒定出1098個(gè)人類和鼠類的線粒體蛋白,發(fā)表了一份綜合蛋白及蛋白質(zhì)組目錄,,名為“MitoCarta”,,但其中大部分蛋白質(zhì)的功能還不明確。2010年9月,,他們通過MitoCarta目錄找到了一個(gè)與線粒體攝取鈣有關(guān)的特殊蛋白,,命名為MICU1。
但MICU1并沒有跨越膜,,只是鈣通道機(jī)制中一個(gè)重要組成部分,,作為膜通道調(diào)控器,與它相對應(yīng)的蛋白才是真正的“運(yùn)輸車”,。研究小組再以MICU1為引線,搜尋了全部RNA基因組和蛋白質(zhì)表達(dá)數(shù)據(jù)庫,,以及包含了500個(gè)物種的基因組信息,,終于發(fā)現(xiàn)有一種未知的,、功能不明的蛋白質(zhì),在形狀上跟MICU1正相對應(yīng),。研究人員給它取名為MCU,,即“線粒體鈣單輸送體”。
為了證實(shí)MCU是線粒體鈣吸收的關(guān)鍵蛋白,,他們與Alnylam制藥公司合作,,利用一種RNAi工具(能選擇性地使細(xì)胞中基因喪失活性)讓小鼠肝臟中的MCU喪失了活性,盡管小鼠沒有立即顯出反應(yīng),,但它們肝臟組織中的線粒體已經(jīng)喪失了吸收鈣的功能,。
穆薩表示,這在某些人類疾病中也能得到證實(shí),。神經(jīng)組織退化類疾病的患者,,其大腦神經(jīng)元常會(huì)出現(xiàn)線粒體鈣負(fù)荷超標(biāo)。胰島素等許多激素也是由于細(xì)胞質(zhì)中的鈣介入而釋放,,清除細(xì)胞質(zhì)中的鈣,,線粒體就會(huì)發(fā)出相關(guān)信號(hào)。MICU1和MCU不僅對研究能量代謝和細(xì)胞信號(hào)之間的關(guān)系具有重要意義,,對缺血性損傷,、神經(jīng)退行性疾病、糖尿病等多種疾病,,也是重要的藥物標(biāo)靶,。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature DOI:10.1038/nature10234
Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
Joshua M. Baughman, Fabiana Perocchi, Hany S. Girgis,Molly Plovanich,Casey A. Belcher-Timme, Yasemin Sancak, X. Robert Bao, Laura Strittmatter,Olga Goldberger, Roman L. Bogorad, Victor Koteliansky & Vamsi K. Mootha1
Mitochondria from diverse organisms are capable of transporting large amounts of Ca2+ via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter1, 2, 3, 4. Although the uniporter’s biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter5. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call ‘mitochondrial calcium uniporter’ (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca2+ uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca2+ uniporter.