美國(guó)加利福尼亞州薩克拉門托——由美國(guó)加州大學(xué)戴維斯分校(UC Davis)領(lǐng)導(dǎo)的一個(gè)國(guó)際科學(xué)家團(tuán)隊(duì)發(fā)現(xiàn)了癌癥細(xì)胞中的DNA修復(fù)并不是此前認(rèn)為的單行道。他們的發(fā)現(xiàn)表明,,與此相反的是,重組—一種重要的DNA修復(fù)機(jī)制—有一種自我糾錯(cuò)機(jī)制,,可以讓DNA進(jìn)行一個(gè)回轉(zhuǎn)并重新開(kāi)始。
發(fā)表在了10月23日的《自然》(Nature)雜志網(wǎng)絡(luò)版上的這項(xiàng)研究的發(fā)現(xiàn)不僅對(duì)基本癌癥生物學(xué)領(lǐng)域提供了新的理解,,而且還對(duì)可能改善癌癥療法的有效程度具有重要意義,。
“我們發(fā)現(xiàn)的是稱為重組的DNA修復(fù)路徑有能力逆轉(zhuǎn)自身,”加州大學(xué)戴維斯分校微生物學(xué)以及分子和細(xì)胞生物學(xué)教授,、加州大學(xué)戴維斯分校癌癥中心分子腫瘤學(xué)的領(lǐng)導(dǎo)人之一的Wolf-Dietrich Heyer說(shuō),。“這讓它成為了一個(gè)非常強(qiáng)健的過(guò)程,讓癌細(xì)胞用許多不同的方式應(yīng)對(duì)DNA損傷,。這種修復(fù)機(jī)制可能和一些癌細(xì)胞對(duì)目的為引發(fā)DNA破壞的放療和化療變得抵抗的原因有關(guān),。”
Heyer把DNA修復(fù)系統(tǒng)的自我糾錯(cuò)能力比作在現(xiàn)代的城市駕車,U形轉(zhuǎn)彎和雙向車道讓糾正錯(cuò)誤轉(zhuǎn)彎變得容易,。他說(shuō):“如果你在一個(gè)只有單行道的中世紀(jì)意大利街道上,,重新回到你的道路上就困難得多。”
在當(dāng)前這項(xiàng)研究中,,Heyer和他的同事使用酵母作為模型系統(tǒng)闡釋DNA修復(fù)的機(jī)制,。他們預(yù)計(jì)他們的發(fā)現(xiàn)將在人體上得到證實(shí)——就像大多數(shù)基于酵母的研究結(jié)果一樣。Heyer說(shuō):“不論是酵母還是人類,,修復(fù)DNA的路徑是相同的,。”
這個(gè)研究組使用電子顯微鏡觀察DNA鏈上正在工作的修復(fù)蛋白質(zhì),。他們觀察到了稱為Rad51的前突觸絲調(diào)控著一種促進(jìn)重組修復(fù)的酶(Rad55-Rad57)和另一種抑制重組修復(fù)的酶(Srs2)的平衡。通過(guò)控制這兩種酶的平衡,,Rad51可以在需要的時(shí)候啟動(dòng)遺傳修復(fù)——或者相反,。
“這是一個(gè)對(duì)細(xì)胞具有重要意義的拔河賽,因?yàn)槿绻亟M在錯(cuò)誤的時(shí)間和錯(cuò)誤的地點(diǎn)出現(xiàn),,細(xì)胞可能因此而死亡,。”修復(fù)系統(tǒng)放棄不良的修復(fù)嘗試的能力讓細(xì)胞有了第二次機(jī)會(huì),在細(xì)胞DNA損傷之后改善了細(xì)胞的生存,。這正是癌癥治療中特別可怕的東西,。
“科學(xué)文獻(xiàn)中有許多線索提示DNA修復(fù)導(dǎo)致對(duì)一些療法產(chǎn)生耐性有貢獻(xiàn),這些療法是建立在引發(fā)DNA損傷的基礎(chǔ)上的,,諸如輻射或某種類型的化學(xué)療法,,”Heyer說(shuō)。“癌細(xì)胞忍受DNA損傷的能力直接影響著治療結(jié)果,,理解DNA修復(fù)系統(tǒng)的基本機(jī)制將讓新的方法克服治療抵抗,。”
Heyer說(shuō)該研究組的下一步是審視人類的酶系統(tǒng)并弄清他們是否發(fā)現(xiàn)了同樣的原理在起作用。這項(xiàng)研究已經(jīng)獲得了資助并且已經(jīng)啟動(dòng)了,。這項(xiàng)研究的一個(gè)應(yīng)用將是針對(duì)癌細(xì)胞的自我糾錯(cuò)機(jī)制,,作為讓它們對(duì)放療和/或化療變得敏感的一種方式。
“如果我們能夠證實(shí)這些類型的機(jī)制在人類細(xì)胞中存在,,我們就將擁有讓癌細(xì)胞對(duì)引發(fā)DNA損傷的療法更敏感的一種治療方式。”(生物谷 Bioon.com)
doi:10.1038/nature10522
PMC:
PMID:
Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation
Jie Liu,, Ludovic Renault, Xavier Veaute, Francis Fabre, Henning Stahlberg & Wolf-Dietrich Heyer
Homologous recombination is a high-fidelity DNA repair pathway. Besides a critical role in accurate chromosome segregation during meiosis, recombination functions in DNA repair and in the recovery of stalled or broken replication forks to ensure genomic stability. In contrast, inappropriate recombination contributes to genomic instability, leading to loss of heterozygosity, chromosome rearrangements and cell death. The RecA/UvsX/RadA/Rad51 family of proteins catalyses the signature reactions of recombination, homology search and DNA strand invasion1, 2. Eukaryotes also possess Rad51 paralogues, whose exact role in recombination remains to be defined3. Here we show that the Saccharomyces cerevisiae Rad51 paralogues, the Rad55–Rad57 heterodimer, counteract the antirecombination activity of the Srs2 helicase. The Rad55–Rad57 heterodimer associates with the Rad51–single-stranded DNA filament, rendering it more stable than a nucleoprotein filament containing Rad51 alone. The Rad51–Rad55–Rad57 co-filament resists disruption by the Srs2 antirecombinase by blocking Srs2 translocation, involving a direct protein interaction between Rad55–Rad57 and Srs2. Our results demonstrate an unexpected role of the Rad51 paralogues in stabilizing the Rad51 filament against a biologically important antagonist, the Srs2 antirecombination helicase. The biological significance of this mechanism is indicated by a complete suppression of the ionizing radiation sensitivity of rad55 or rad57 mutants by concomitant deletion of SRS2, as expected for biological antagonists. We propose that the Rad51 presynaptic filament is a meta-stable reversible intermediate, whose assembly and disassembly is governed by the balance between Rad55–Rad57 and Srs2, providing a key regulatory mechanism controlling the initiation of homologous recombination. These data provide a paradigm for the potential function of the human RAD51 paralogues, which are known to be involved in cancer predisposition and human disease.