冷泉港實(shí)驗(yàn)室(CSHL)近日發(fā)表了一項(xiàng)關(guān)于RNA剪接的新研究,這項(xiàng)研究打破了30多年以來(lái)對(duì)于RNA剪接機(jī)制的認(rèn)識(shí),。
在細(xì)胞中,,編碼蛋白質(zhì)的信息首先從DNA轉(zhuǎn)錄成mRNA,mRNA再指導(dǎo)蛋白質(zhì)合成,,但是mRNA并不是DNA的簡(jiǎn)單復(fù)制,,DNA最初復(fù)制得到的是前體mRNA(pre-messenger RNA),前體mRNA經(jīng)過(guò)剪接編輯過(guò)程,,剪掉不必要的內(nèi)含子序列,,留下編碼蛋白質(zhì)的外顯子,再將這些外顯子拼接在一起而得到mRNA。為了使這種“剪切-粘貼”機(jī)制能準(zhǔn)確無(wú)誤地進(jìn)行,,在剪接開(kāi)始時(shí),,必須由另一外更小的RNA——U1進(jìn)行引導(dǎo),以便正確識(shí)別內(nèi)含子的剪接位點(diǎn),。
在內(nèi)含子開(kāi)始端U1識(shí)別剪接位點(diǎn)的能力最強(qiáng),,這時(shí)U1與目標(biāo)RNA的配對(duì)堿基超過(guò)10個(gè),但是在大多數(shù)情況下,,形成的堿基對(duì)較少,。在2009年,科學(xué)家發(fā)現(xiàn)U1甚至能識(shí)別表面上不完整的剪接位點(diǎn),,這些位點(diǎn)沒(méi)有正確匹配RNA的序列,。U1不是排隊(duì)目標(biāo)內(nèi)含子RNA序列的第一個(gè)堿基,有時(shí)能滑到下一個(gè)堿基,,如果這種移動(dòng)使更多的U1堿基與目標(biāo)堿基配對(duì)就會(huì)產(chǎn)生一個(gè)更強(qiáng)的匹配,。
現(xiàn)在,他們發(fā)現(xiàn)了第二個(gè)更普遍的可變選擇,,它不是從第一個(gè)堿基移離,,而是U1或其目標(biāo)上的一個(gè)個(gè)或多個(gè)堿基能凸出來(lái),或從堿基隊(duì)列脫出,,如果這樣可使得周圍核苷酸產(chǎn)生U1與目標(biāo)間的較強(qiáng)匹配,。
根據(jù)對(duì)6500個(gè)人類基因剪接位點(diǎn)的研究,估計(jì)5%的剪接位點(diǎn)用這個(gè)"凸起"機(jī)制來(lái)被識(shí)別,,這些剪接位點(diǎn)存在于40%的人類基因中,。有趣的是,一些非典型識(shí)別位點(diǎn)出現(xiàn)在具致病性突變的基因中,,其他非典型識(shí)別位點(diǎn)是可變剪接發(fā)生的位置,。
這項(xiàng)研究擴(kuò)展了U1識(shí)別剪接位點(diǎn)的內(nèi)容,有助于我們更深入地了解內(nèi)含子的剪接過(guò)程,同時(shí)有助于我們找出某些能引發(fā)疾病的剪接缺陷,為新的治療方法的產(chǎn)生提供依據(jù)。(生物谷bioon.com)
doi:10.1101/gad.190173.112
Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides
X. Roca, M. Akerman, H. Gaus, A. Berdeja, C. F. Bennett, A. R. Krainer
An established paradigm in pre-mRNA splicing is the recognition of the 5′ splice site (5′ss) by canonical base-pairing to the 5′ end of U1 small nuclear RNA (snRNA). We recently reported that a small subset of 5′ss base-pair to U1 in an alternate register that is shifted by 1 nucleotide. Using genetic suppression experiments in human cells, we now demonstrate that many other 5′ss are recognized via noncanonical base-pairing registers involving bulged nucleotides on either the 5′ss or U1 RNA strand, which we term "bulge registers." By combining experimental evidence with transcriptome-wide free-energy calculations of 5′ss/U1 base-pairing, we estimate that 10,248 5′ss (?5% of human 5′ss) in 6577 genes use bulge registers. Several of these 5′ss occur in genes with mutations causing genetic diseases and are often associated with alternative splicing. These results call for a redefinition of an essential element for gene expression that incorporates these registers, with important implications for the molecular classification of splicing mutations and for alternative splicing.