據(jù)一項新的研究披露,在合適的情況下,,科學(xué)家們能夠比過去更為有效地誘導(dǎo)DNA折疊成為復(fù)雜的,、納米尺度的物體。這些發(fā)現(xiàn)應(yīng)該會使諸如納米級電子器件或藥物輸送系統(tǒng)等的DNA納米技術(shù)在實際應(yīng)用上更為有用,。在過去的研究中,,科學(xué)家們通過折疊由短DNA“書釘”捆綁的某單股DNA“支架” 而制作出了一系列令人印象深刻的三維、納米大小的物體,。這些過程往往是緩慢的——需要耗時多日——且產(chǎn)生出相對少量的最終產(chǎn)品,。Jean-Philippe Sobczak及其在德國的同事用一種熒光染料來檢查該折疊過程以測量在折疊中雙股DNA的形成或在展開時單股DNA的形成。他們還在不同的時間和溫度急速冷凍樣品并檢查這些產(chǎn)物,。研究人員發(fā)現(xiàn)了以數(shù)量級加速折疊的反應(yīng)條件——在某些情況下可至分鐘水平——并使產(chǎn)出增加了近100%,。文章的作者推測,這一過程的某些方面與蛋白質(zhì)折疊類似,,而這一加快的過程也許有一天會使在細(xì)胞內(nèi)生產(chǎn)這些物體成為可能,。(生物谷Bioon.com)
DOI: 10.1126/science.1229919
PMC:
PMID:
Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature
Jean-Philippe J. Sobczak, Thomas G. Martin, Thomas Gerling, Hendrik Dietz*
We demonstrate that, at constant temperature, hundreds of DNA strands can cooperatively fold a long template DNA strand within minutes into complex nanoscale objects. Folding occurred out of equilibrium along nucleation-driven pathways at temperatures that could be influenced by the choice of sequences, strand lengths, and chain topology. Unfolding occurred in apparent equilibrium at higher temperatures than those for folding. Folding at optimized constant temperatures enabled the rapid production of three-dimensional DNA objects with yields that approached 100%. The results point to similarities with protein folding in spite of chemical and structural differences. The possibility for rapid and high-yield assembly will enable DNA nanotechnology for practical applications.