動(dòng)物界如此龐大的多樣性是如何從有限的基因庫(kù)演化而來(lái)的呢,?小鼠之所以一直是醫(yī)學(xué)研究的有效模型,是因?yàn)樗c人類共有80%的蛋白編碼基因,。越來(lái)越多的科學(xué)證據(jù)顯示,,自然界驚人復(fù)雜性的關(guān)鍵在于轉(zhuǎn)錄因子對(duì)基因表達(dá)的調(diào)控。現(xiàn)在,,美國(guó)能源部Lawrence Berkeley實(shí)驗(yàn)室和加州大學(xué)伯克利分校的研究人員,,發(fā)現(xiàn)了關(guān)鍵轉(zhuǎn)錄因子通過(guò)結(jié)構(gòu)轉(zhuǎn)換調(diào)節(jié)基因表達(dá)的秘密。
生物物理學(xué)家Eva Nogale領(lǐng)導(dǎo)的研究人員通過(guò)單顆粒冷凍電子顯微鏡,,發(fā)現(xiàn)TFIID轉(zhuǎn)錄因子有兩種不同的結(jié)構(gòu)狀態(tài)并存,。這兩種狀態(tài)(標(biāo)準(zhǔn)態(tài)和重排態(tài))的差別只在于一個(gè)亞結(jié)構(gòu)元件lobe A的易位,而這一結(jié)構(gòu)轉(zhuǎn)換能夠起始轉(zhuǎn)錄,,將DNA的遺傳學(xué)信息轉(zhuǎn)錄到RNA中以便進(jìn)行蛋白合成,。
“TFIID能在標(biāo)準(zhǔn)態(tài)和重排態(tài)之間波動(dòng),” 文章通訊作者,,頂尖電鏡專家Nogales說(shuō),。“當(dāng)TFIID結(jié)合另一個(gè)轉(zhuǎn)錄因子TFIIA時(shí),主要轉(zhuǎn)為標(biāo)準(zhǔn)態(tài),。但當(dāng)TFIIA和DNA都存在時(shí),,TFIID轉(zhuǎn)為重排態(tài),以識(shí)別和結(jié)合關(guān)鍵的DNA序列,,這也標(biāo)志著轉(zhuǎn)錄過(guò)程的開(kāi)始,。”
轉(zhuǎn)錄是生物生長(zhǎng)、發(fā)育和生存健康的關(guān)鍵過(guò)程,,研究TFIID結(jié)構(gòu)轉(zhuǎn)變及其在轉(zhuǎn)錄中的作用,,有助于進(jìn)一步理解基因表達(dá)調(diào)控。
隨著越來(lái)越多生物的基因組被測(cè)序,,人們發(fā)現(xiàn)基因組中的基因總數(shù)并不能反映生物的復(fù)雜性,。例如,果蠅比線蟲(chóng)(Caenorhabditis elegans)復(fù)雜得多,,但其基因卻比線蟲(chóng)少了約六千個(gè),。果蠅基因組約有兩萬(wàn)個(gè)基因,而據(jù)推測(cè)人類的基因總數(shù)也不過(guò)在三萬(wàn)到四萬(wàn)之間,。果蠅和線蟲(chóng)體內(nèi)調(diào)控基因表達(dá)的轉(zhuǎn)錄因子約有一千種,,而人類差不多有三千種。這些轉(zhuǎn)錄因子往往以多種組合的形式起作用,由此帶來(lái)了更大的復(fù)雜性,。
“盡管在多細(xì)胞動(dòng)物的進(jìn)化過(guò)程中,,蛋白編碼基因的數(shù)量相對(duì)穩(wěn)定,但DNA調(diào)控元件的數(shù)量卻在顯著增加,,” Nogales說(shuō),。“我們發(fā)現(xiàn)TFIID存在兩種結(jié)構(gòu)和功能形式,展示了轉(zhuǎn)錄因子組合調(diào)控基因表達(dá)水平從而增加多樣性的機(jī)制,。”
Nogales及其同事通過(guò)單顆粒冷凍電子顯微鏡,,首次獲得了人類TFIID與DNA結(jié)合的三維圖象。“我們發(fā)現(xiàn)TFIID有著驚人的靈活性,,其lobe A區(qū)域約占復(fù)合體的三分之一,,而這一區(qū)域能夠易位100埃,”文章第一作者M(jìn)ichael A. Cianfrocco說(shuō),。“lobe A易位是TFIID結(jié)合DNA所必需的,。”
無(wú)DNA存在時(shí)TFIID傾向于標(biāo)準(zhǔn)態(tài),此時(shí)TFIID的lobe A與lobe C結(jié)合,。而重組態(tài)時(shí)TFIID的lobe A與lobe B結(jié)合,,使TFIID能夠與DNA的啟動(dòng)子牢固結(jié)合。
“TFIIA分子介導(dǎo)了這一易位過(guò)程,,在無(wú)DNA時(shí)TFIIA維持TFIID的標(biāo)準(zhǔn)態(tài),,而當(dāng)DNA啟動(dòng)子出現(xiàn)后它幫助起始TFIID的重組態(tài),” Cianfrocco說(shuō),。“沒(méi)有TFIIA的存在,,TFIID與DNA的結(jié)合很弱。”
Nogales及其同事正在研究TFIID結(jié)合DNA后,,如何招募基因轉(zhuǎn)錄所需的其它蛋白,。“這包括構(gòu)建超過(guò)兩百萬(wàn)道爾頓的大分子復(fù)合體,差不多有細(xì)菌核糖體那么大,,” Nogales說(shuō),。“這一復(fù)合物的尺寸及其相對(duì)不穩(wěn)定性,將是實(shí)驗(yàn)面臨的主要挑戰(zhàn),。”(生物谷Bioon.com)
10.1016/j.cell.2012.12.005
PMC:
PMID:
Human TFIID Binds to Core Promoter DNA in a Reorganized Structural State
Michael A. Cianfrocco, George A. Kassavetis, Patricia Grob, Jie Fang, Tamar Juven-Gershon, James T. Kadonaga, Eva Nogales
A mechanistic description of metazoan transcription is essential for understanding the molecular processes that govern cellular decisions. To provide structural insights into the DNA recognition step of transcription initiation, we used single-particle electron microscopy (EM) to visualize human TFIID with promoter DNA. This analysis revealed that TFIID coexists in two predominant and distinct structural states that differ by a 100 Å translocation of TFIIDs lobe A. The transition between these structural states is modulated by TFIIA, as the presence of TFIIA and promoter DNA facilitates the formation of a rearranged state of TFIID that enables promoter recognition and binding. DNA labeling and footprinting, together with cryo-EM studies, were used to map the locations of TATA, Initiator (Inr), motif ten element (MTE), and downstream core promoter element (DPE) promoter motifs within the TFIID-TFIIA-DNA structure. The existence of two structurally and functionally distinct forms of TFIID suggests that the different conformers may serve as specific targets for the action of regulatory factors.