癌癥的重要特點之一是癌細胞的快速分裂和生長,,而這個過程需要大量能量作為支撐,英國研究人員日前發(fā)表報告說,,他們找到了一種能夠限制癌細胞能量來源的方法,可以通過這種方式“餓死”癌細胞,,幫助治療癌癥。
英國帝國理工學院等機構(gòu)研究人員在新一期《自然—細胞生物學》雜志上報告說,,癌細胞通常依靠分解葡萄糖來獲取能量,,如果體內(nèi)的葡萄糖含量不足則轉(zhuǎn)向別的能量來源,,研究人員發(fā)現(xiàn)一種名為NF-kB的蛋白質(zhì)控制著其能量供應方式的轉(zhuǎn)換,,如果抑制這種蛋白質(zhì)的功能,,癌細胞就不能按需轉(zhuǎn)換能量供應方式,,會進入能量供應不足的狀態(tài)甚至“餓死”,。
研究人員在實驗室中用腸癌細胞進行了實驗,,結(jié)果顯示可以通過這種限制能量供應的方式來殺死癌細胞,。此外,,如果在抑制蛋白質(zhì)NF-kB的功能的同時,,使用一種已有的糖尿病藥物二甲雙胍,則“餓死”癌細胞的效率會大大提高,。
領導研究的吉多·弗蘭佐索教授說,,這是首次揭示蛋白質(zhì)NF-kB具有調(diào)節(jié)細胞能量來源的功能,以前雖然也知道它在癌癥中發(fā)揮著某種作用,,但具體機理不是很清楚,,因此與之相關的癌癥治療方式效果也不太理想。本次研究還發(fā)現(xiàn)可以將它和二甲雙胍聯(lián)合使用,,有望在此基礎上研發(fā)出更有效的癌癥治療方式,。(生物谷 Bioon.com)
doi:10.1038/ncb2324
PMC:
PMID:
NF-[kappa]B controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration
Claudio Mauro; Shi Chi Leow; Elena Anso; Sonia Rocha; Anil K. Thotakura; Laura Tornatore; Marta Moretti; Enrico De Smaele; Amer A. Beg; Vinay Tergaonkar; Navdeep S. Chandel; Guido Franzoso
Cell proliferation is a metabolically demanding process1, 2. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth1, 2. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis3, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. 4). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.