4月12日發(fā)表在《細(xì)胞》雜志的一項(xiàng)研究論文中,,北卡羅萊納大學(xué)教堂山分校研究人員介紹一種蛋白激酶測(cè)試技術(shù)可以研究癌癥抗藥性的機(jī)制,為腫瘤聯(lián)合療法的確定提供判斷依據(jù),。
激酶在人體組織中發(fā)揮關(guān)鍵作用,,特別是對(duì)癌癥細(xì)胞的生長(zhǎng)尤為重要。在518個(gè)已知的人類激酶中,,約400個(gè)在癌癥中表達(dá),,但在腫瘤中有哪一種激酶以及多少激酶是實(shí)際發(fā)揮作用的很難衡量。癌癥研究人員為開(kāi)發(fā)激酶抑制劑治療癌癥付出了巨大努力,,一些藥物也已經(jīng)上市如Herceptin,、Tykerb和Gleevec。然而,,盡管這一類抗癌藥物的有效性,,但大多數(shù)癌癥最終還是會(huì)產(chǎn)生耐藥性,。UNC研究團(tuán)隊(duì)開(kāi)發(fā)出一種測(cè)試,可以測(cè)量所有存在和活動(dòng)的激酶的60-70%,,使研究者了解癌癥如何逃避激酶抑制劑的治療,,使研究人員能夠結(jié)合藥物來(lái)阻止耐藥性產(chǎn)生。
Gary Johnson博士,,該研究的主要領(lǐng)導(dǎo)者說(shuō):?jiǎn)嗡幖っ敢种苿┑倪\(yùn)用往往在實(shí)踐中失敗,,因?yàn)槟[瘤蛋白激酶的網(wǎng)絡(luò)會(huì)學(xué)會(huì)如何處理這些抑制劑,導(dǎo)致快速藥物抵抗,。我們對(duì)我們實(shí)驗(yàn)室已開(kāi)發(fā)的測(cè)試技術(shù)感到非常興奮,,因?yàn)樗墓ぷ?a href="http://hnhlg.com/sell/show-35942.html" target="_blank">原理在乳腺癌模型中得到很好運(yùn)用,,能很好地預(yù)測(cè)聯(lián)合療法的成功,。Johnson醫(yī)學(xué)博士是UNC醫(yī)學(xué)院凱南特聘教授和藥理學(xué)部門主席,也是UNC萊恩伯格綜合癌癥中心的成員,。
研究人員表示:作為一個(gè)腫瘤學(xué)家,,最令人沮喪的事情之一是當(dāng)腫瘤病人接受治療時(shí)產(chǎn)生耐藥性。我們很高興能檢查在激酶抑制劑治療前,、中以及后腫瘤標(biāo)本的激酶變化情況,。
該小組希望能夠在癌癥治療期間使用新的測(cè)試技術(shù)跟蹤研究激酶“重新編程”過(guò)程,以確定什么樣的藥物組合將阻止癌癥耐藥性的產(chǎn)生,。該測(cè)試技術(shù)的專利申請(qǐng)已提交,。(生物谷:Bioon.com)
doi:10.1016/j.cell.2012.02.053
PMC:
PMID:
Dynamic Reprogramming of the Kinome in Response to Targeted MEK Inhibition in Triple-Negative Breast Cancer
James S. Duncan, Martin C. Whittle, Kazuhiro Nakamura, Amy N. Abell, Alicia A. Midland, Jon S. Zawistowski, Nancy L. Johnson, Deborah A. Granger, Nicole Vincent Jordan, David B. Darr et al
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.