通過鑒定出的一個(gè)關(guān)鍵的蛋白質(zhì),,它揭示了某些乳腺癌細(xì)胞是何時(shí)以及如何移動(dòng)的,密歇根州立大學(xué)的研究人員希望能夠更好地理解乳腺癌擴(kuò)散或轉(zhuǎn)移過程,。
當(dāng)乳腺癌發(fā)生轉(zhuǎn)移時(shí),癌細(xì)胞脫離原發(fā)腫瘤組織轉(zhuǎn)移到身體其他器官包括肺,、肝,、腦等部位。最近密歇根州立大學(xué)研究人員在Cancer Research雜志上發(fā)表的一則研究證實(shí)一種稱為MLK3的蛋白質(zhì)是乳腺癌細(xì)胞遷移和侵襲的關(guān)鍵驅(qū)動(dòng)力,。
更重要的是,,Chen和Gallo發(fā)現(xiàn)在三陰性乳腺癌腫瘤細(xì)胞中,靶向MLK3有可能阻撓細(xì)胞遷移和侵襲,。
密歇根州立大學(xué)的生理學(xué)教研室教授Gallo說,,雖然一直在尋找殺死腫瘤細(xì)胞的藥物,但最近科學(xué)家轉(zhuǎn)向?qū)ふ夷苤袛嗄[瘤轉(zhuǎn)移的藥物,??茖W(xué)家希望的是這類藥物與常規(guī)療法相結(jié)合給患者提供更好的治療效果。
研究生發(fā)現(xiàn)消除MLK3能防止腫瘤動(dòng)物模型中腫瘤轉(zhuǎn)移到肺組織,,這一研究為開展針對MLK3途徑以防止癌細(xì)胞擴(kuò)散的后續(xù)研究奠定了基礎(chǔ),。
研究人員觀察了MLK3蛋白是如何指示關(guān)鍵細(xì)胞蛋白彼此互動(dòng)從而導(dǎo)致癌細(xì)胞的移動(dòng)具體來說,MLK3促進(jìn)了樁蛋白的磷酸化,,來控制細(xì)胞的移動(dòng),。
Gallo 和Chen通過完全消除MLK3表達(dá)或使用MLK3抑制劑藥物CEP-1347來阻止MLK3激活其他蛋白質(zhì)磷酸化的能力,,進(jìn)而抑制乳腺癌模型中細(xì)胞的運(yùn)動(dòng),。實(shí)驗(yàn)結(jié)果表明,當(dāng)某些癌細(xì)胞失去MLK3時(shí),,樁蛋白等磷酸化能力受損,,最終削弱了細(xì)胞遷移,減少了細(xì)胞的運(yùn)動(dòng),。
我們的研究表明,,研究控制細(xì)胞運(yùn)動(dòng)的MLK3胞內(nèi)信號通路可以為治療轉(zhuǎn)移癌患者提供新的思路,,開發(fā)抑制MLK3活性的藥物可能有助于降低乳腺癌擴(kuò)散。
MLK3是一種蛋白激酶,,這一類型的蛋白質(zhì)已被證明是癌癥和其他疾病的良好的藥物靶點(diǎn),。
盡管如化療藥物殺死所有細(xì)胞,但研究表明抑制激酶往往可以更有效,,并且副作用也較少,。
研究人員下一步是測試是否MLK3抑制劑可以防止動(dòng)物模型中的轉(zhuǎn)移性癌癥。
該小組的研究是由國防部乳腺癌研究計(jì)劃和艾爾莎U.帕迪基金會(huì)署的撥款支持,。MLK抑制劑CEP-1347由梯瓦制藥工業(yè)有限公司附屬公司Cephalon提供,。(生物谷:Bioon.com)
編譯自:Potential Cancer Roadblock Found
doi:10.1158/0008-5472.CAN-12-0655
PMC:
PMID:
MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis
Jian Chen1 and Kathleen A. Gallo2,*
MLK3 kinase activates multiple MAPKs and plays a critical role in cancer cell migration and invasion. In the tumor microenvironment, pro-metastatic factors drive breast cancer invasion and metastasis, but their associated signaling pathways are not well-known. Here, we provide evidence that MLK3 is required for chemokine (CXCL12)-induced invasion of basal breast cancer cells. We found that MLK3 induced robust phosphorylation of the focal adhesion scaffold paxillin on Ser 178 and Tyr 118, which was blocked by silencing or inhibition of MLK3-JNK. Silencing or inhibition of MLK3, inhibition of JNK, or expression of paxillin S178A all led to enhanced Rho activity, indicating that the MLK3-JNK-paxillin axis limits Rho activity to promote focal adhesion turnover and migration. Consistent with this, MLK3 silencing increased focal adhesions and stress fibers in breast cancer cells. MLK3 silencing also decreased the formation of breast cancer lung metastases in vivo, and breast cancer cells derived from mouse lung metastases showed enhanced Ser 178 paxillin phosphorylation. Taken together, our findings suggest that the MLK3-JNK-paxillin signaling axis may represent a potential therapeutic target and/or prognostic marker in breast cancer metastasis.