近日,國際著名學術(shù)期刊《自然-材料》 (Nature Materials)在線發(fā)表了中國科學技術(shù)大學生命科學學院溫龍平教授研究組題為Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides 的研究論文,。在這篇論文中,,研究人員采用一系列特異性表面結(jié)合肽,人為調(diào)控稀土納米材料的細胞自噬行為,,從而大大降低納米材料的毒副作用,,并提高對腫瘤靶細胞的殺傷效應(yīng)。這一成果為納米材料在體內(nèi)的診療應(yīng)用提供了新方法新思路,。
細胞自噬是細胞利用溶酶體降解受損的細胞器,、大分子物質(zhì)和長壽命蛋白質(zhì)以維護細胞自穩(wěn)態(tài)(Homeostasis)的關(guān)鍵細胞生物學過程,與多種重大疾病的發(fā)生,、發(fā)展及治療息息相關(guān),。細胞自噬的研究已成為繼細胞凋亡之后又一迅猛發(fā)展的生物學研究領(lǐng)域,。近年來的研究表明,,許多納米顆粒可引發(fā)細胞自噬并促進細胞死亡,。納米顆粒引發(fā)的細胞自噬是一把雙刃劍,,一方面,自發(fā)或以診療目的進入人體內(nèi)的納米顆粒在正常細胞中引起的自噬會引起毒性,,需要加以規(guī)避,;另一方面,在特定細胞中引起的自噬可用于幫助疾病治療,如癌癥的化放療增敏和免疫治療以及神經(jīng)退行性疾病的治療,。有效地人為調(diào)控納米顆粒引發(fā)的自噬效應(yīng),,對納米材料及納米器件的體內(nèi)應(yīng)用將起到巨大的促進作用。
溫龍平教授的研究小組利用噬菌體展示技術(shù),,發(fā)現(xiàn)了一種能夠與稀土氧化物納米材料和稀土上轉(zhuǎn)換發(fā)光納米材料特異性結(jié)合并在其表面形成一穩(wěn)定涂層的短肽RE-1,。該短肽大大提高了納米顆粒在水中的懸浮能力,并通過抑制納米顆粒與細胞的相互作用降低細胞自噬水平,,從而屏蔽納米材料由于細胞自噬而產(chǎn)生的細胞毒性和組織損傷,,提高納米材料的生物安全性。另一方面,,靶向修飾后的短肽,,即RE-1與RGD序列組成的復(fù)合短肽,則能夠通過與細胞外的整合素(Integrins)相互作用而提高稀土納米材料在整合素高表達癌細胞中的自噬及殺傷效應(yīng),,顯示通過特異性表面涂層肽結(jié)合靶向的策略有望同時實現(xiàn)在正常細胞中屏蔽自噬和在癌細胞中提高自噬以增進化療的目標,。
該論文的第一作者為溫龍平實驗室的博士生張云嬌。新加坡國立大學,、浙江師范大學,、四川大學的科研人員參與了該論文的部分實驗工作。該項研究受到國家自然科學基金委,、科技部,、中科院以及教育部的資助。(生物谷Bioon.com)
doi:10.1038/nmat3363
PMC:
PMID:
Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides
Zhang Y, Zheng F, Yang T, Zhou W, Liu Y, Man N, Zhang L, Jin N, Dou Q, Zhang Y, Li Z, Wen LP.
The induction of autophagy on exposure of cells to a variety of nanoparticles represents both a safety concern and an application niche for engineered nanomaterials. Here, we show that a short synthetic peptide, RE-1, identified by means of phage display, binds to lanthanide (LN) oxide and upconversion nanocrystals (UCN), forms a stable coating layer on the nanoparticles' surface, and effectively abrogates their autophagy-inducing activity. Furthermore, RE-1 peptide variants exhibit a differentially reduced binding capability, and correspondingly, a varied ability to reduce the autophagic response. We also show that the addition of an arginine-glycine-aspartic acid (RGD) motif to RE-1 enhances autophagy for LN UCN through the interaction with integrins. RE-1 and its variants provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy, and may prove useful for the various diagnostic and therapeutic applications of LN-based nanomaterials and nanodevices.