生物谷:來自巴西圣保羅州立大學(UNIVERSIDADE ESTADUAL PAULISTA),美國紐約州立石溪大學(Stony Brook University),,以及中科院長春應(yīng)用化學研究所電分析化學國家重點實驗室(
State Key Laboratory of Electroanalytical Chemistry)的研究人員在之前研究的基礎(chǔ)上發(fā)現(xiàn)了擴散diffusion在蛋白折疊動力學方面的重要作用,,這修改了經(jīng)典的轉(zhuǎn)換狀態(tài)理論,,也為進一步了解折疊機制,更加完善定量經(jīng)典轉(zhuǎn)換狀態(tài)理論提供了重要依據(jù),。這一研究成果公布在《美國國家科學院院刊》(PNAS)雜志上,。
文章的通訊作者是來自以上三所機構(gòu)的王進博士(Jin Wang,音譯),,其早年畢業(yè)于吉林大學,,目前任吉林大學副教授(具體簡介見后)。
結(jié)構(gòu)決定功能,,僅僅知道基因組序列并不能使我們充分了解蛋白質(zhì)的功能,,更無法知道它是如何工作的。蛋白質(zhì)可憑借相互作用在細胞環(huán)境(特定的酸堿度,、溫度等)下自己組裝自己,,這種自我組裝的過程被稱為蛋白質(zhì)折疊。
蛋白質(zhì)折疊問題被列為“21世紀的生物物理學”的重要課題,,它是分子生物學中心法則尚未解決的一個重大生物學問題,。從一級序列預測蛋白質(zhì)分子的三級結(jié)構(gòu)并進一步預測其功能,是極富挑戰(zhàn)性的工作,。研究蛋白質(zhì)折疊,,尤其是折疊早期過程,即新生肽段的折疊過程是全面的最終闡明中心法則的一個根本問題,,在這一領(lǐng)域中,,近年來的新發(fā)現(xiàn)對新生肽段能夠自發(fā)進行折疊的傳統(tǒng)概念做了根本的修正。這其中,,X射線晶體衍射和各種波譜技術(shù)以及電子顯微鏡技術(shù)等發(fā)揮了極其重要的作用,。第十三屆國際生物物理大會上,Nobel獎獲得者Ernst在報告中強調(diào)指出,,NMR用于研究蛋白質(zhì)的一個主要優(yōu)點在于它能極為詳細的研究蛋白質(zhì)分子的動力學,,即動態(tài)的結(jié)構(gòu)或結(jié)構(gòu)的運動與蛋白質(zhì)分子功能的關(guān)系。
目前的NMR技術(shù)已經(jīng)能夠在秒到皮秒的時間域上觀察蛋白質(zhì)結(jié)構(gòu)的運動過程,,其中包括主鏈和側(cè)鏈的運動,,以及在各種不同的溫度和壓力下蛋白質(zhì)的折疊和去折疊過程。蛋白質(zhì)大分子的結(jié)構(gòu)分析也不僅僅只是解出某個具體的結(jié)構(gòu),,而是更加關(guān)注結(jié)構(gòu)的漲落和運動,。例如,運輸小分子的酶和蛋白質(zhì)通常存在著兩種構(gòu)象,結(jié)合配體的和未結(jié)合配體的,。一種構(gòu)象內(nèi)的結(jié)構(gòu)漲落是構(gòu)象轉(zhuǎn)變所必需的前奏,,因此需要把光譜學,波譜學和X 射線結(jié)構(gòu)分析結(jié)合起來研究結(jié)構(gòu)漲落的平衡,,構(gòu)象改變和改變過程中形成的多種中間態(tài),,又如,為了了解蛋白質(zhì)是如何折疊的,,就必須知道折疊時幾個基本過程的時間尺度和機制,包括二級結(jié)構(gòu)(螺旋和折疊)的形成,,卷曲,,長程相互作用以及未折疊肽段的全面崩潰。多種技術(shù)用于研究次過程,,如快速核磁共振,,快速光譜技術(shù)(熒光,遠紫外和近紫外圓二色),。
在這篇文章中,,研究人員則在之前研究的基礎(chǔ)上發(fā)現(xiàn)了擴散diffusion在蛋白折疊動力學方面的重要作用,并且這種擴散屬于典型的構(gòu)造或反應(yīng)坐標(reaction coordinate)依賴型,。擴散系數(shù)(diffusion coefficient)隨著蛋白天然狀態(tài)折疊級數(shù)的增加而減少,,這主要是由于構(gòu)造空間約束的一種緊密狀態(tài)的坍塌造成的。而構(gòu)造或位置依賴性擴散系數(shù)除了熱力學自由能障礙外對于動力學也貢獻巨大,,它能有效的改變動力學域值,,以及相應(yīng)轉(zhuǎn)變狀態(tài)的位置,從而改變折疊動力學比率和動力學路徑,。
這一理論修改了經(jīng)典的轉(zhuǎn)換狀態(tài)理論,,研究人員也需要進一步了解折疊機制,更加完善定量經(jīng)典轉(zhuǎn)換狀態(tài)理論,。
原始出處:
Published online before print September 5, 2007
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0606506104
Configuration-dependent diffusion can shift the kinetic transition state and barrier height of protein folding
( phi value analysis | spatial-dependent diffusion | transition state theory | Monte Carlo simulations )
Jorge Chahine , Ronaldo J. Oliveira , Vitor B. P. Leite , and Jin Wang ¶
Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 15054-000 São José do Rio Preto, Brazil; Departments of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794; and ¶State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130021, China
Edited by José N. Onuchic, University of California at San Diego, La Jolla, CA, and approved June 26, 2007 (received for review July 29, 2006)
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.