金屬蛋白在包括呼吸、光合作用和藥物代謝在內(nèi)的很過生物過程中扮演關(guān)鍵角色,。在一種蛋白分子被完全定性之前,,其中一個(gè)金屬的存在經(jīng)常并不明顯,由于這個(gè)原因,,同時(shí)也由于金屬協(xié)調(diào)點(diǎn)的多樣性,,目前還沒有可能利用基因組序列來根據(jù)一種生物所處環(huán)境或該生物的金屬蛋白組成預(yù)測其所利用的金屬類型。
因此,,Cvetkovic等人采用了另外一種途徑,,利用傳統(tǒng)液相色譜來識(shí)別一種生物(超嗜熱海洋古細(xì)菌Pyrococcus furiosus)中的金屬,利用蛋白組學(xué)方法來研究金屬蛋白,。在色譜的343個(gè)金屬峰中,,158個(gè)與任何已知的或預(yù)測的金屬蛋白都不匹配,包括以前并不知道該生物所能夠利用的金屬,。這項(xiàng)工作表明,,金屬蛋白要比我們以前所認(rèn)為的更為廣泛和多樣。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09265
Microbial metalloproteomes are largely uncharacterized
Aleksandar Cvetkovic,Angeli Lal Menon,Michael P. Thorgersen,Joseph W. Scott,Farris L. Poole II,Francis E. Jenney Jr,W. Andrew Lancaster,Jeremy L. Praissman,Saratchandra Shanmukh,Brian J. Vaccaro,Sunia A. Trauger,Ewa Kalisiak,Junefredo V. Apon,Gary Siuzdak,Steven M. Yannone,John A. Tainer& Michael W. W. Adams
Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability1, 2. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized2, 3, 4. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.