法國(guó)國(guó)家科研中心2日發(fā)表公報(bào)說(shuō),該機(jī)構(gòu)與巴斯德研究所合作,,通過(guò)揭示基孔肯雅病毒表面蛋白質(zhì)的3D結(jié)構(gòu),,掌握了這種病毒侵入細(xì)胞的機(jī)制,這一發(fā)現(xiàn)將有助于開(kāi)發(fā)新的抗病毒藥物,。
公報(bào)稱,,研究人員借助電子顯微鏡清楚觀測(cè)到這種病毒表面蛋白質(zhì)的3D結(jié)構(gòu),他們發(fā)現(xiàn),,蛋白質(zhì)E1,、E2、p62等在病毒入侵機(jī)制中發(fā)揮著關(guān)鍵作用。首先,,基孔肯雅病毒會(huì)在E2的幫助下附著在細(xì)胞膜上,,然后被運(yùn)送到核內(nèi)體,后者的酸性環(huán)境會(huì)激發(fā)E1的活性,,在它的作用下,,病毒與核內(nèi)體融為一體,并趁機(jī)在細(xì)胞中釋放核糖核酸,,從而復(fù)制更多的病毒,。在完成對(duì)一個(gè)細(xì)胞的感染后,病毒表面的蛋白質(zhì)會(huì)重新組合,,在p62的幫助下沖破酸性環(huán)境,,尋找新的傳播目標(biāo)。
基孔肯雅病毒是導(dǎo)致基孔肯雅熱的元兇,?;卓涎艧崾且园l(fā)熱、皮疹及關(guān)節(jié)痛為主要特征的急性傳染病,,主要在南亞,、非洲中部和東部等地區(qū)傳播,目前尚無(wú)防治的特效藥或疫苗,。研究人員說(shuō),,掌握基孔肯雅病毒的傳播機(jī)制將有助于提高基孔肯雅熱的防治水平。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09555
Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography
James E. Voss,Marie-Christine Vaney,Stéphane Duquerroy,Clemens Vonrhein,Christine Girard-Blanc,Elodie Crublet,Andrew Thompson,Gérard Bricogne& Félix A. Rey
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused widespread outbreaks of debilitating human disease in the past five years1. CHIKV invasion of susceptible cells is mediated by two viral glycoproteins, E1 and E2, which carry the main antigenic determinants and form an icosahedral shell at the virion surface. Glycoprotein E2, derived from furin cleavage of the p62 precursor into E3 and E2, is responsible for receptor binding, and E1 for membrane fusion. In the context of a concerted multidisciplinary effort to understand the biology of CHIKV2, here we report the crystal structures of the precursor p62–E1 heterodimer and of the mature E3–E2–E1 glycoprotein complexes. The resulting atomic models allow the synthesis of a wealth of genetic, biochemical, immunological and electron microscopy data accumulated over the years on alphaviruses in general. This combination yields a detailed picture of the functional architecture of the 25?MDa alphavirus surface glycoprotein shell. Together with the accompanying report on the structure of the Sindbis virus E2–E1 heterodimer at acidic pH (ref. 3), this work also provides new insight into the acid-triggered conformational change on the virus particle and its inbuilt inhibition mechanism in the immature complex.