來自復(fù)旦大學(xué)生命科學(xué)學(xué)院,,上海生物信息技術(shù)研究中心,中科院上海生科院系統(tǒng)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,,英國(guó)貝德福德大學(xué)( University of Bedfordshire)等處的研究人員利用新方法對(duì)C3植物在脅迫環(huán)境下,,葉綠體光合成代謝情況進(jìn)行了分析,發(fā)現(xiàn)這一動(dòng)力學(xué)過程中復(fù)雜代謝網(wǎng)絡(luò)的穩(wěn)定機(jī)制,,為研究植物代謝提供了重要信息,,這一研究成果公布在1月7日《美國(guó)國(guó)家科學(xué)院院刊》(PNAS)在線版上。
在這篇文章中,,研究人員利用了一種新方法對(duì)C3植物在脅迫環(huán)境(干旱脅迫和高CO2濃度)下,,其葉綠體的光合成代謝情況進(jìn)行了分析,這種方法稱為M_DFBA,,最小化新陳代謝調(diào)整動(dòng)力學(xué)流量平衡(minimization of metabolic adjustment dynamic flux balance analysis),。
研究結(jié)果表明,C3植物葉綠體中的光合成代謝能高度協(xié)調(diào)新陳代謝的波動(dòng),,這種高度協(xié)調(diào)性保證了生物系統(tǒng)的穩(wěn)定,,而且對(duì)于穩(wěn)定生物體的功能至關(guān)重要。新研究方法有利于了解此類現(xiàn)象和動(dòng)力過程中的復(fù)雜代謝網(wǎng)絡(luò)的穩(wěn)定機(jī)制,,可以運(yùn)用到其它方面,。(生物谷Bioon.com)
生物谷推薦原始出處:
PNAS Published online before print January 7, 2009, doi: 10.1073/pnas.0810731105
Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: A systems biological analysis
Ruoyu Luoa,b,c,1, Haibin Weic,1, Lin Yec, Kankan Wangd, Fan Chene, Lijun Luof, Lei Liua,b, Yuanyuan Lib, M. James C. Crabbeg, Li Jinc, Yixue Lia,b,2 and Yang Zhongb,c,f,2
aKey Laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200020, China;
bShanghai Center for Bioinformation Technology, Shanghai 200023, China;
cSchool of Life Sciences, Fudan University, Shanghai 200433, China;
dState Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai 200020, China;
eKey Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China;
fShanghai Agro-Biological Gene Center, Shanghai 201106, China; and
gInstitute of Applied Natural Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton LU1 3JU, United Kingdom
Abstract
We studied the robustness of photosynthetic metabolism in the chloroplasts of C3 plants under drought stress and at high CO2 concentration conditions by using a method called Minimization of Metabolic Adjustment Dynamic Flux Balance Analysis (M_DFBA). Photosynthetic metabolism in the chloroplasts of C3 plants applies highly cooperative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. Our work suggests that highly cooperative regulation assures the robustness of the biological system and that there is closer cooperation under perturbation conditions than under normal conditions. This results in minimizing fluctuations in the profiles of metabolite concentrations, which is the key to maintaining a system's function. Our methods help in understanding such phenomena and the mechanisms of robustness for complex metabolic networks in dynamic processes.