臺灣中央研究院分子生物研究所特聘研究員余淑美實驗室于10月6日發(fā)表重要論文Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding,,發(fā)現(xiàn)水稻耐淹水的關鍵基因,,揭開數(shù)千年來所有谷類作物中,,只有水稻種子可在水中發(fā)芽及成長的秘密,。
這篇研究的發(fā)現(xiàn),對于目前全球種植水稻以淹水方式防治雜草,,以及促進其他作物耐淹水的育種等范疇,,都有重大影響。
論文刊登在國際專業(yè)期刊《科學—信號傳導》(Science Signaling),,該期刊隸屬于國際頂尖期刊《科學》(Science)集團,,專門以報道有關分子生物、神經(jīng)科學,、微生物,、生理學與醫(yī)學、細胞生物學等領域的最前端創(chuàng)新性論文為主,。論文第一作者李國維是余淑美研究員的博士生,,目前就讀于國防醫(yī)學院生命科學研究所博士班。
研究團隊指出,,淹水是一個全球性的重大災害,,通常導致作物缺氧而停止生長甚至死亡,因此造成嚴重的農(nóng)業(yè)損失,。水稻是唯一耐淹水的主要作物,,但是分子機制一直未被破解。
本篇論文重要的貢獻是清楚呈現(xiàn)“蛋白激酶”(CIPK15)為調(diào)控水稻耐淹水的關鍵基因。研究團隊發(fā)現(xiàn),,當水稻種子在淹水狀態(tài)下,,將缺氧訊息傳遞到CIPK15,接著再調(diào)控細胞內(nèi)具有監(jiān)測能量多寡及感應逆境的多功能蛋白激酶(SnRK1A),,然后透過糖訊息傳遞途徑在水稻種子內(nèi)大量制造淀粉水解酶(amylase)將淀粉轉(zhuǎn)化成糖,,同時大量制造酒精脫氫酶(alcohol dehydrogenase)將糖發(fā)酵產(chǎn)生能量(ATP),使種子有足夠碳水化合物及能量而能夠在水中發(fā)芽,。等小苗快速生長至水面可以呼吸更多空氣后,,根部以同樣原理制造碳水化合物及能量,而使植株可在半淹水稻田中生長,。其他谷類作物及雜草并無這些能力,因此無法在水中發(fā)芽及生長,。
余淑美研究員指出,,水稻不怎么喜歡淹水,但是可以忍耐淹水,。因此,,傳統(tǒng)稻農(nóng)的智慧是利用淹水方式去除雜草,可以大量減少人工及除草劑,。因而目前全球80%的水稻田,,藉此耕種方式來生產(chǎn)足以養(yǎng)活全球近半數(shù)人口的稻米。
此篇論文發(fā)現(xiàn)CIPK15對水稻耕作乃至人類生活的高度貢獻,,由此可見,。由于臺風等天然災害,常造成農(nóng)作物淹水之重大損害,,本研究也可以協(xié)助育出各種耐淹水作物,,減少水損。(生物谷Bioon.com)
生物谷推薦原始出處:
Sci. Signal., 6 October 2009 DOI: 10.1126/scisignal.2000333
Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding
Kuo-Wei Lee1,6, Peng-Wen Chen2, Chung-An Lu3, Shu Chen4, Tuan-Hua David Ho5, and Su-May Yu6*
1 Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, ROC.
2 Institute of Agricultural Biotechnology, National Chiayi University, Chiayi City 600, Taiwan, ROC.
3 Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
4 Taiwan Agricultural Research Institute, Wufeng, Taichung 413, Taiwan, ROC.
5 Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC.
6 Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC.
Abstract: Flooding is a widespread natural disaster that leads to oxygen (O2) and energy deficiency in terrestrial plants, thereby reducing their productivity. Rice is unusually tolerant to flooding, but the underlying mechanism for this tolerance has remained elusive. Here, we show that protein kinase CIPK15 [calcineurin B–like (CBL)–interacting protein kinase] plays a key role in O2-deficiency tolerance in rice. CIPK15 regulates the plant global energy and stress sensor SnRK1A (Snf1-related protein kinase 1) and links O2-deficiency signals to the SnRK1-dependent sugar-sensing cascade to regulate sugar and energy production and to enable rice growth under floodwater. Our studies contribute to understanding how rice grows under the conditions of O2 deficiency necessary for growing rice in irrigated lowlands.