近日,,澳大利亞科學家用方程式表達出了與蒼蠅視力相關的大腦細胞活性,。他們通過這些方程式,,發(fā)現(xiàn)了非常簡單有效的方法,,可以從原始數據中處理運動模式,,這種運動模式指的是一個物體、表面,、邊緣在一個視角下由一個觀察者(比如眼睛,、攝像頭等)和背景之間形成的明顯移動,并用于小型無人飛行機器人遙感導航系統(tǒng)。
據報道,,澳洲科學家建立的這個系統(tǒng)在將來可能用來為小型無人駕駛飛機,、搜索和救援機器人、汽車導航系統(tǒng)和其他系統(tǒng)的視覺系統(tǒng)編程,。大衛(wèi)·歐·卡洛(David O’Carroll)是澳大利亞阿德萊德大學的研究昆蟲視覺的計算神經科學家,,他說:“我們從生物學中獲取靈感,制作出了這樣一個非線性系統(tǒng),。這個系統(tǒng)涉及的計算量非常少,,而且,這個系統(tǒng)得出計算結果所需要的浮點運算次數比傳統(tǒng)方法少成千上萬倍,。”
為了制造出小型化的飛行機器人,,研究人員需要更簡單的方式來處理運動過程。現(xiàn)在,,研究人員已經從小小的蒼蠅身上找到了靈感,,因為蒼蠅僅用相對少的神經元就可以非常靈巧的飛翔。在10年前,,歐·卡洛和其它研究者煞費苦心的開展了蒼蠅飛行研究,,并測量出飛行過程中大腦細胞的活性,同時,,進一步將這些結果轉化為一套計算規(guī)則,。
11月13日,歐·卡洛和他的同事生物學家羅素·布林克沃思(Russell Brinkworth) 在《公共圖書館·計算生物學》上發(fā)表了一篇文章中稱,,他們測試了這套系統(tǒng),。歐·卡洛說:“筆記本電腦的功率達幾十瓦,而我們的系統(tǒng)功率消耗不足毫瓦,。”
研究者的算法由5個方程組成,,通過這5個方程,可以計算從攝像機獲得的數據,。每個方程表示了飛行中所用的技巧,,通過這個方程可以掌控強度、對比度和移動的變化量,,并且方程的參數隨著輸入的不同不斷改變,。這套算法不會比較兩幀圖像的像素變化,只是強調大范圍的運動變化模式,。從這種意義上說,,它的工作原理有點像視頻壓縮系統(tǒng)。
為了測試這套算法,,歐·卡洛和布林克沃思分析了動畫片中的高分辨率圖像,。當他們將輸入和輸出進行比較后,, 他們發(fā)現(xiàn)這個算法可以工作在大量自然光環(huán)境中以及工作在移動探測器都感到困難的地方。肖恩·亨伯特(Sean Humbert )說:“這真是一個令人驚異的工作,。”亨伯特是馬里蘭大學的一名航天工程師,,他制造了小型無人飛行機器人。亨伯特說:“傳統(tǒng)的遙感導航系統(tǒng)需要大量的設備來計算,。但是裝在這些機器人身上的設備非常小,。”
歐·卡洛說:“我們的工作從昆蟲的視覺獲得靈感,并制造出一個現(xiàn)實世界中可用的模型,。但是,,在這個過程中,我們已經制作出和昆蟲一樣復雜的系統(tǒng),。這是一個有趣的事情,,這個事情不是讓我們去完全了解這個系統(tǒng)是如何工作的,它只是讓我們了解大自然是正確的,。”(生物谷Bioon.com)
生物谷推薦原始出處:
PLoS Comput Biol 5(11): e1000555. doi:10.1371/journal.pcbi.1000555
Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology
Russell S. A. Brinkworth*, David C. O'Carroll
Discipline of Physiology, School of Molecular and Biomedical Science, The University of Adelaide, South Australia, Australia
The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors.