5月29日,,《歐洲人類遺傳學雜志》在線發(fā)表了上海生科院計算生物學研究所徐書華研究組的研究成果“A panel of ancestry informative markers to estimate and correct potential effects of population stratification in Han Chinese”,。該項工作針對復雜疾病關聯(lián)研究中由于群體遺傳結(jié)構(gòu)(或群體分層)導致假陽性結(jié)果的問題,,建立了一套識別漢族內(nèi)部遺傳結(jié)構(gòu)和控制復雜疾病關聯(lián)分析中群體分層的遺傳標記。這套標記尤其適用于“post-GWAS”時代的基于候選基因策略的關聯(lián)研究,。
關聯(lián)分析是研究復雜疾病遺傳影響因素并建立“表型-基因型”聯(lián)系的重要手段,?;谌巳簶颖驹O計的關聯(lián)研究,,尤其是基于“病例-對照”設計的關聯(lián)研究,,經(jīng)常面臨的一個困難是人群遺傳結(jié)構(gòu)或群體分層作為一種嚴重的混雜因素導致的假陽性結(jié)果。漢族的歷史悠久,、起源復雜,,加之幾千年的不同程度的基因交流和民族融合,,使得漢族遺傳成分極其復雜,。在徐書華前期研究中,,已經(jīng)發(fā)現(xiàn)漢族人群內(nèi)部的遺傳結(jié)構(gòu),并往往導致漢族人群關聯(lián)分析中的假陽性結(jié)果,。因此,,如何識別并控制人群遺傳結(jié)構(gòu)對關聯(lián)分析結(jié)果的影響,成為復雜疾病基因定位研究中不可回避的問題,。
該項研究通過在5500例漢族個體的全基因組數(shù)據(jù)中篩選,,建立起可以高度識別漢族人群遺傳結(jié)構(gòu)的DNA標記,并進一步通過實驗數(shù)據(jù)和計算機仿真評估了這套標記的效能,。研究成果對今后在漢族人群中從事關聯(lián)分析的研究具有實際應用價值,。通過這套標記,直接依據(jù)DNA信息對遺傳結(jié)構(gòu)進行識別,、對樣本進行客觀分類和篩選,,是關聯(lián)分析合理實驗設計的前提,也是保證關聯(lián)分析結(jié)果可靠性的必要條件,。
該工作由計算生物學所徐書華研究員與上海交通大學師詠勇教授以及復旦大學金力教授合作完成,。計算生物學所博士生秦鵬飛等實施了具體分析工作。該研究工作得到了國家自然科學基金,、中國科學院,、上海市科委、德國馬普學會,、香港王寬誠教育基金會等基金的資助,。(生物谷Bioon.com)
生物谷推薦英文摘要:
European Journal of Human Genetics doi:10.1038/ejhg.2013.111
A panel of ancestry informative markers to estimate and correct potential effects of population stratification in Han Chinese
Population stratification acts as a confounding factor in genetic association studies and may lead to false-positive or false-negative results. Previous studies have analyzed the genetic substructures in Han Chinese population, the largest ethnic group in the world comprising ~20% of the global human population. In this study, we examined 5540 Han Chinese individuals with about 1 million single-nucleotide polymorphisms (SNPs) and screened a panel of ancestry informative markers (AIMs) to facilitate the discerning and controlling of population structure in future association studies on Han Chinese. Based on genome-wide data, we first confirmed our previous observation of the north–south differentiation in Han Chinese population. Second, we developed a panel of 150 validated SNP AIMs to determine the northern or southern origin of each Han Chinese individual. We further evaluated the performance of our AIMs panel in association studies in simulation analysis. Our results showed that this AIMs panel had sufficient power to discern and control population stratification in Han Chinese, which could significantly reduce false-positive rates in both genome-wide association studies (GWAS) and candidate gene association studies (CGAS). We suggest this AIMs panel be genotyped and used to control and correct population stratification in the study design or data analysis of future association studies, especially in CGAS which is the most popular approach to validate previous reports on genetic associations of diseases in post-GWAS era.