中科院上海植物逆境生物學(xué)研究中心朱健康課題組,、中科院上海藥物研究所徐華強課題組和中科院廣州生物醫(yī)藥與健康研究院許永研究員在最新的研究中,共同發(fā)現(xiàn)了脫落酸(Abscisic acid, ABA)受體激動劑AM1(ABA mimic 1),。AM1是一種具有脫落酸活性的小分子化合物,,噴施于植物后可以降低葉片的失水速率,,顯著提高植物在干旱環(huán)境下的成活率,這一新發(fā)現(xiàn)為農(nóng)業(yè)生產(chǎn)中的節(jié)水抗旱提供了新思路,。7月9日,,相關(guān)研究成果發(fā)表在國際學(xué)術(shù)期刊Cell Research上。
近年來我國旱災(zāi)頻繁,,受旱面積大,。除西北長期缺水、華北旱災(zāi)頻繁外,,旱災(zāi)在長江流域發(fā)生的頻率近年也有很大提高,,日益嚴(yán)重的干旱更成為影響作物產(chǎn)量的首要環(huán)境因素。2010年以來的我國西南地區(qū)的持續(xù)干旱造成農(nóng)作物的減產(chǎn)甚至絕收,。2012年美國50年不遇的大旱波及到30多個州的近2000個縣,,造成玉米價格暴漲60%。這促使植物科學(xué)家們一直在尋找一種更加安全,、有效的農(nóng)業(yè)抗旱手段,。
盡管傳統(tǒng)的抗旱育種取得了一定成效,但由于在目標(biāo)物種中缺少合適的遺傳變異,,所以節(jié)水抗旱作物品種的育種效率一直不高,。此外,植物的抗旱機理復(fù)雜,,涉及多基因的協(xié)同控制,,并且還受到如干旱發(fā)生時機等環(huán)境因素的影響,所以利用基因工程方法提高作物抗旱性也存在較大難度,,加之公眾對轉(zhuǎn)基因食品的使用尚存疑慮,,所以該項技術(shù)的進一步應(yīng)用存在很大阻礙。
脫落酸是應(yīng)對環(huán)境脅迫的主要植物激素,,可以促進葉片氣孔關(guān)閉以減少水分蒸發(fā),,從而幫助植物有效應(yīng)對干旱的威脅。朱健康研究員長期從事植物抗逆生理和ABA信號傳導(dǎo)的研究,,2009年與徐華強研究員合作解析了ABA受體的結(jié)構(gòu),,被Science雜志評為了當(dāng)年度十大科學(xué)發(fā)現(xiàn)之一。在此研究工作的基礎(chǔ)上,,借助于模式植物擬南芥的PYR1蛋白,,研究人員從人工合成的小分子化合物庫中篩選得到PYR1受體的激動劑AM1(ABA mimic 1)。AM1可以通過激活擬南芥中的多個脫落酸受體來模擬天然脫落酸的作用,,與天然脫落酸相比,,此次發(fā)現(xiàn)的AM1結(jié)構(gòu)簡單且不存在旋光異構(gòu)體,、易于合成和純化,、成本更低,,且AM1的生理活性較之前發(fā)現(xiàn)的脫落酸類似物Pyrabactin高出一個數(shù)量級,在種子萌發(fā)和營養(yǎng)生長等多個生理階段均可發(fā)揮作用,。由于脫落酸受體的氨基酸序列在高等植物中非常保守,,因此AM1無需進行改造即可同時應(yīng)用于大面積、多種類的農(nóng)作物,。
與傳統(tǒng)的轉(zhuǎn)基因作物相比,,AM1的使用更加靈活,在意外遭受干旱的農(nóng)作物產(chǎn)區(qū),,可以通過在短期內(nèi)持續(xù)噴施AM1來提高作物的存活率,,在旱季結(jié)束后即可停止施用。上述優(yōu)點使得AM1在農(nóng)業(yè)生產(chǎn)領(lǐng)域具有極大的應(yīng)用潛力和市場價值,。(生物谷Bioon.com)
生物谷推薦英文摘要:
Cell Research doi:10.1038/cr.2013.95
An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
Minjie Cao, Xue Liu, Yan Zhang, Xiaoqian Xue, X Edward Zhou, Karsten Melcher, Pan Gao, Fuxing Wang, Liang Zeng, Yang Zhao, Yang Zhao, Pan Deng, Dafang Zhong, Jian-Kang Zhu, H Eric Xu and Yong Xu
Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules.