記者從廈門大學(xué)生命科學(xué)學(xué)院獲悉,因研究一種被稱為karyopherin beta的家族蛋白質(zhì)取得突破,,該院一篇論文3月19日在線發(fā)表于蛋白質(zhì)組學(xué)領(lǐng)域的國(guó)際頂級(jí)刊物《分子與細(xì)胞蛋白質(zhì)組學(xué)》(Molecular & Cellular Proteomics)上,,該雜志的審稿人認(rèn)為此項(xiàng)研究成果是一項(xiàng)非常優(yōu)秀的工作,將對(duì)大分子在細(xì)胞核質(zhì)間運(yùn)輸研究領(lǐng)域的發(fā)展有極大的幫助,。
這項(xiàng)研究成果是廈門大學(xué)生科院陶濤教授實(shí)驗(yàn)室和紀(jì)志梁副教授實(shí)驗(yàn)室三年合作的結(jié)晶,。陶濤介紹說(shuō),蛋白質(zhì)和核酸等大分子負(fù)責(zé)調(diào)控基因的轉(zhuǎn)錄,、蛋白質(zhì)的翻譯和信號(hào)轉(zhuǎn)導(dǎo),,它們?cè)谡婧思?xì)胞中核質(zhì)間的運(yùn)輸和定位是細(xì)胞最重要的生理功能之一。在哺乳動(dòng)物細(xì)胞中已發(fā)現(xiàn)有20個(gè)蛋白質(zhì)來(lái)承擔(dān)大分子運(yùn)輸和定位生理功能,,這類蛋白質(zhì)被稱為karyopherin beta家族蛋白質(zhì),。
在此前沒(méi)有人大規(guī)模系統(tǒng)研究該家族蛋白質(zhì)的進(jìn)化和轉(zhuǎn)錄調(diào)控方式。陶濤和紀(jì)志梁應(yīng)用生物信息學(xué)等研究手段,,系統(tǒng)研究了從原核生物基因組到人類基因組所有可能編碼的karyopherin beta家族蛋白質(zhì)和其前體蛋白質(zhì)的分子進(jìn)化的過(guò)程,、方式和分子機(jī)理,并揭示了這些基因在不同發(fā)育時(shí)期,、不同組織器官和不同細(xì)胞周期中的調(diào)控方式,。此項(xiàng)成果對(duì)研究細(xì)胞的生理功能和機(jī)體發(fā)育有重要的意義。
《分子與細(xì)胞蛋白質(zhì)組學(xué)》(Molecular & Cellular Proteomics)是國(guó)際蛋白質(zhì)組學(xué)領(lǐng)域的頂級(jí)刊物,,其影響因子為9.9,,具有權(quán)威的學(xué)術(shù)影響力。
生物谷推薦原始出處:
Mol. Cell. Proteomics, Mar 2008; 7: 612 - 625.
Proteomics Analysis of Host Cells Infected with Infectious Bursal Disease Virus*,S
Xiaojuan Zheng, Lianlian Hong, Lixue Shi, Junqing Guo, Zhen Sun and Jiyong Zhou,,¶,||
From the Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310029, China, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China, and ¶ Key Laboratory of conservation genetics and reproductive biology for endangered wild animals of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
The effect of infectious bursal disease virus (IBDV) infection on cellular protein expression is essential for viral pathogenesis. To characterize the cellular response to IBDV infection, the differential proteomes of chicken embryo fibroblasts, with and without IBDV infection, were analyzed at different time points with two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2-DE gels revealed that the majority of protein expression changes appeared at 48 and 96 h after IBDV infection. Mass spectrometry identified 51 altered cellular proteins, including 13 up-regulated proteins and 38 down-regulated proteins 12–96 h after infection. Notably 2-DE analysis revealed that IBDV infection induced the increased expression of polyubiquitin, apolipoprotein A-I, heat shock 27-kDa protein 1, actins, tubulins, eukaryotic translation initiation factor 4A isoform 2, acidic ribosomal phosphoprotein, and ribosomal protein SA isoform 2. In addition, IBDV infection considerably suppressed those cellular proteins involved in ubiquitin-mediated protein degradation, energy metabolism, intermediate filaments, host translational apparatus, and signal transduction. Moreover 38 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between infected and uninfected chicken embryo fibroblasts. Western blot further confirmed the inhibition of Rho protein GDP dissociation inhibitor expression and the induction of polyubiquitin during IBDV infection. Subcellular distribution analysis of the cytoskeletal proteins vimentin and β-tubulin clearly demonstrated that IBDV infection induced the disruption of the vimentin network and microtubules late in IBDV infection. Thus, this work effectively provides useful dynamic protein-related information to facilitate further investigation of the underlying mechanism of IBDV infection and pathogenesis.