8月5日,國際醫(yī)學(xué)期刊The Journal of Experimental Medicine在線發(fā)表了中科院上海生物化學(xué)與細(xì)胞生物學(xué)研究所鄒衛(wèi)國研究組題為Microtubule-Associated Protein DCAMKL1 regulates osteoblast function via repression of Runx2的研究論文,。此研究發(fā)現(xiàn)微管結(jié)合蛋白DCAMKL1通過抑制轉(zhuǎn)錄因子RUNX2活性進(jìn)而調(diào)控成骨細(xì)胞的功能,。
骨的生長發(fā)育和新陳代謝是機(jī)體重要的生命活動。成骨細(xì)胞來源于中胚層間充質(zhì)干細(xì)胞,,能夠分泌骨基質(zhì)并使之發(fā)生礦化,,從而形成新的骨結(jié)構(gòu)。該項(xiàng)研究通過將慢病毒為基礎(chǔ)的shRNA庫導(dǎo)入原代培養(yǎng)的間充質(zhì)干細(xì)胞,然后誘導(dǎo)向成骨細(xì)胞分化,,通過定量檢測分化的早期標(biāo)志物堿性磷酸酶的活性,,高通量的篩選了成骨細(xì)胞分化的新的調(diào)節(jié)因子。研究發(fā)現(xiàn)微管結(jié)合蛋白DCAMKL1被敲低后,,間充質(zhì)干細(xì)胞向成骨細(xì)胞的分化能力增強(qiáng),。Dcamkl1基因敲除小鼠的成骨細(xì)胞功能增強(qiáng)、骨生成速率增加,、骨密度增加,。分子機(jī)制的研究表明DCAMKL1能夠通過提高微管蛋白的多聚化,從而抑制成骨細(xì)胞分化的主要轉(zhuǎn)錄因子RUNX2的活性,。RUNX2的多種突變導(dǎo)致人類常染色體顯性疾病——鎖骨顱骨發(fā)育不全(Cleidocranial Dysplasia, CCD),,其特征性表現(xiàn)為鎖骨發(fā)育不全和持續(xù)性顱骨縫開放。與此相一致,,Runx2雜合子小鼠同樣表現(xiàn)出鎖骨,、顱骨發(fā)育不全,所有這些CCD相關(guān)的表型都能夠通過基因敲除Dcamkl1得到部分的回復(fù),,進(jìn)一步確證了DCAMKL1和RUNX2的遺傳聯(lián)系。
這項(xiàng)研究建立了在成骨細(xì)胞中運(yùn)用正向遺傳學(xué)方法篩選新的調(diào)節(jié)因子的方法,,鑒定了一個調(diào)節(jié)成骨細(xì)胞功能的新的調(diào)節(jié)因子,,提示可能通過調(diào)節(jié)微管的多聚化來增強(qiáng)骨骼強(qiáng)度,從而治療骨質(zhì)疏松癥等疾病,。
該工作起始于鄒衛(wèi)國研究員在國外的工作,,由中國科學(xué)院生物化學(xué)與細(xì)胞生物學(xué)研究所、美國哈佛大學(xué)醫(yī)學(xué)院,、康納爾大學(xué),、哈佛大學(xué)口腔學(xué)院、Merck公司的研究人員共同完成,。鄒衛(wèi)國研究員是文章的第一作者和通訊作者,。
工作得到中科院生物化學(xué)與細(xì)胞生物學(xué)研究所啟動資金、細(xì)胞生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室資金以及NIH項(xiàng)目的支持,。(生物谷 Bioon.com)
生物谷推薦的英文摘要
JEM
The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2.
Zou W, Greenblatt MB, Brady N, Lotinun S, Zhai B, de Rivera H, Singh A, Sun J, Gygi SP, Baron R, Glimcher LH, Jones DC.
Osteoblasts are responsible for the formation and mineralization of the skeleton. To identify novel regulators of osteoblast differentiation, we conducted an unbiased forward genetic screen using a lentiviral-based shRNA library. This functional genomics analysis led to the identification of the microtubule-associated protein DCAMKL1 (Doublecortin-like and CAM kinase-like 1) as a novel regulator of osteogenesis. Mice with a targeted disruption of Dcamkl1 displayed elevated bone mass secondary to increased bone formation by osteoblasts. Molecular experiments demonstrated that DCAMKL1 represses osteoblast activation by antagonizing Runx2, the master transcription factor in osteoblasts. Key elements of the cleidocranial dysplasia phenotype observed in Runx2+/- mice are reversed by the introduction of a Dcamkl1-null allele. Our results establish a genetic linkage between these two proteins in vivo and demonstrate that DCAMKL1 is a physiologically relevant regulator of anabolic bone formation.