生物谷報(bào)道:由TIGR(The Institute for Genomic Research)的Vishvanath Nene教授及Notre Dame大學(xué)的David Severson教授領(lǐng)軍的研究團(tuán)隊(duì)解開了埃及斑蚊(Aedes aegypti)的基因組(genome)序列,包括功能性基因及其它的DNA片斷。此研究發(fā)表于5月18日的Science Express,題目為[Genome Sequence of Aedes aegypti, A Major Arbovirus Vector],,研究成員來(lái)自世界各國(guó)24所大學(xué)及研究院共同完成,。
加州大學(xué)河邊分校(University of California, Riverside)的Jinsong Zhu教授研究團(tuán)隊(duì),,確認(rèn)了埃及斑蚊基因組中大約80%,,總共15,419個(gè)具有功能性的基因,,研究人員也定序了大量的訊息RNAs(messenger RNAs),,以確認(rèn)這些基因的確是具有功能性的,。
維吉尼亞理工大學(xué)(Virginia Tech)的Zhijian (Jake) Tu教授研究團(tuán)隊(duì),則負(fù)責(zé)埃及斑蚊基因組中跳躍基因(transposable elements,,簡(jiǎn)稱TEs)的研究,,結(jié)果發(fā)現(xiàn)大約有超過(guò)1,000個(gè)以上的跳躍基因,大約占據(jù)了整個(gè)基因組的50%以上,,以名為Feilai的跳躍基因?yàn)槔?,它就有超過(guò)50,000個(gè)復(fù)制品,散置在整個(gè)基因組中,。研究人員也表示,,相較之下,甘比亞瘧蚊(Anopheles gambiae)的跳躍基因則大約只占其基因組的25%左右,。
Tu教授表示:「假如把基因組看成一個(gè)生態(tài)系統(tǒng),,跳躍基因就像是基因組中休息的一個(gè)家族,演化方式有別于一般的基因,,它們什么事都不做,,只是不斷地重復(fù)復(fù)制?!共贿^(guò),,跳躍基因也許能開發(fā)成基因研究的工具,觀察蚊子與病毒間的交互作用,而藉此控制疾病的傳播,。例如:利用跳躍基因攜帶抑制物基因到基因組中,,讓蚊子能抵抗病毒或阻止跳躍基因成為病毒的載體。雖然這些假設(shè)都還只是想象,,但似乎成功的幾率很大,,也許未來(lái)這是一個(gè)阻絶蟲媒疾病傳播的新方法。
(資料來(lái)源 : Bio.com)
英文原文鏈接:
原始出處:
Published Online May 17, 2007
Science DOI: 10.1126/science.1138878
Submitted on December 15, 2006
Accepted on May 7, 2007
Genome Sequence of Aedes aegypti, a Major Arbovirus Vector
Vishvanath Nene 1*, Jennifer R. Wortman 1, Daniel Lawson 2, Brian Haas 1, Chinnappa Kodira 3, Zhijian Jake Tu 4, Brendan Loftus 5, Zhijong Xi 6, Karyn Megy 2, Manfred Grabherr 3, Quinghu Ren 1, Evgeny M. Zdobnov 7, Neil F. Lobo 8, Kathryn S. Campbell 9, Susan E. Brown 10, Maria F. Bonaldo 11, Jingsong Zhu 12, Steven P. Sinkins 13, David G. Hogenkamp 14, Paulo Amedo 1, Peter Arsenburger 12, Peter W. Atkinson 12, Shelby Bidwell 1, Jim Biedler 4, Ewan Birney 2, Robert V. Bruggner 8, Javier Costas 15, Monique R. Coy 4, Jonathan Crabtree 1, Matt Crawford 3, Becky deBruyn 8, David DeCaprio 3, Karin Eiglmeier 16, Eric Eisenstadt 1, Hamza El-Dorry 17, William M. Gelbart 9, Suely L. Gomes 17, Martin Hammond 2, Linda I. Hannick 1, James R. Hogan 8, Michael H. Holmes 1, David Jaffe 3, Spencer J. Johnston 18, Ryan C. Kennedy 8, Hean Koo 1, Saul Kravitz 19, Evgenia V. Kriventseva 20, David Kulp 21, Kurt LaButti 3, Edward Lee 1, Song Li 4, Diane D. Lovin 8, Chunhong Mao 4, Evan Mauceli 3, Carlos F. M. Menck 22, Jason R. Miller 1, Philip Montgomery 3, Akio Mori 8, Ana L. Nascimento 23, Horacio F. Naveira 24, Chad Nusbaum 3, Sinéad B. O’Leary 3, Joshua Orvis 1, Mihaela Pertea 25, Hadi Quesneville 26, Kyanne R. Reidenbach 14, Yu-Hui Rogers 19, Charles W. Roth 16, Jennifer R. Schneider 8, Michael Schatz 25, Martin Shumway 1, Mario Stanke 27, Eric O. Stinson 8, Jose M. C. Tubio 28, Janice P. VanZee 14, Sergio Verjovski-Almeida 17, Doreen Werner 29, Owen White 1, Stefan Wyder 20, Qi Zeng 3, Qi Zhao 1, Yongmei Zhao 1, Catherine A. Hill 14, Alexander S. Raikhel 12, Marcelo B. Soares 11, Dennis L. Knudson 10, Norman H. Lee 30, James Galagan 3, Steven L. Salzberg 25, Ian T. Paulsen 1, George Dimopoulos 6, Frank H. Collins 8, Birren Bruce 3, Claire M. Fraser-Liggett 1, David W. Severson 8*
1 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
2 European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
3 Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA.
4 Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
5 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: University College Dublin, Dublin 4, Ireland.
6 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
7 University of Geneva Medical School, 1 rue Michel-Servet, Geneva 1211, Switzerland.; Swiss Institute of Bioinformatics, 1 rue Michel-Servet, Geneva 1211, Switzerland.; Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
8 University of Notre Dame, Notre Dame, IN 46556, USA.
9 Harvard University, Cambridge, MA 02138, USA.
10 College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA.
11 Northwestern University, Chicago, IL 60614, USA.
12 University of California, Riverside, CA 92521, USA.
13 University of Oxford, Oxford OX1 3PS, UK.
14 Purdue University, West Lafayette, IN 47907, USA.
15 Centro Nacional de Genotipado, Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago, Edif. Consultas Planta -2, Santiago de Compostela E-15706, Spain.
16 Institut Pasteur, Paris 75724, France.
17 Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo SP 05508-900, Brazil.
18 Texas A&M University, College Station, TX 77843, USA.
19 Joint Technology Center, 5 Research Place, Rockville, MD 20850, USA.
20 University of Geneva Medical School, 1 rue Michel-Servet, Geneva 1211, Switzerland.
21 University of Massachusetts, Amherst, MA 01003, USA.
22 Universidade de Sao Paulo, Institute of Biomedical Sciences, Sao Paulo SP 05508-900, Brazil.
23 Instituto Butantan, Sao Paulo SP 05503-900, Brazil.
24 Universidade da Coruña, 15001 A Coruña, Spain.
25 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: 3125 Biomolecular Sciences Building, University of Maryland, College Park, MD 20742, USA.
26 Institut Jacques Monod, CNRS, Université Paris Diderot et Université Pierre-et-Marie Curie 2, Place Jussieu, Paris 75252, France.
27 507A Engineering 2, University of California, 1156 High Street, Santa Cruz, CA 95064, USA.; Universität Göttingen, Goldschmidtstraße 1, Göttingen 37077, Germany.
28 Complexo Hospitalario Universitario de Santiago, Santiago de Compostela 15706, Spain.
29 Universität Göttingen, Goldschmidtstraße 1, Göttingen 37077, Germany.
30 The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.; Present address: George Washington University Medical Center, Ross Hall, Room 603, 2300 I Street NW, Washington, DC 20037, USA.
* To whom correspondence should be addressed.
Vishvanath Nene , E-mail: [email protected]
David W. Severson , E-mail: [email protected]
Abstract
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ~1.38 Gbp is ~5-fold larger in size than the genome of the malaria vector, Anopheles gambiae. Nearly 50% of the Aedes aegypti genome consists of transposable elements. These contribute to a ~4-6 fold increase in average gene length and the size of intergenic regions relative to Anopheles gambiae and Drosophila melanogaster. Nevertheless, chromosomal synteny is generally maintained between all three insects although conservation of orthologous gene order is higher (~2-fold) between the mosquito species than between either of them and fruit fly. An increase in genes encoding odorant binding, cytochrome P450 and cuticle domains relative to Anopheles gambiae suggests that members of these protein families underpin some of the biological differences between them.