來自法國(guó),、意大利和德國(guó)的研究人員在新一期英國(guó)Nature雜志上發(fā)表研究論文介紹說,黑松露基因組由7500個(gè)基因組成,,是迄今破譯的最大的菌類基因組,,其中有6000個(gè)基因與其他菌類共享。研究人員對(duì)剩余的1500個(gè)黑松露獨(dú)有基因進(jìn)行了分析,,得出了諸多有關(guān)黑松露的重要信息,,使人們對(duì)這種神秘塊菌有了更多認(rèn)識(shí)。
歐洲著名食材黑松露主要產(chǎn)于法國(guó)境內(nèi)以及西班牙和意大利一些地區(qū),,因其味美、價(jià)高而被譽(yù)為“黑鉆石”,。歐洲研究人員最新報(bào)告說,,他們成功測(cè)序了黑松露基因組,其中有一些特殊基因可以揭示其產(chǎn)地來源,,這將有助于辨別真假黑松露,。
黑松露目前還很難實(shí)現(xiàn)人工種植,僅在某些地區(qū)野外發(fā)現(xiàn)了與橡樹等在地下共生的黑松露,,其稀缺性使得市場(chǎng)上的黑松露售價(jià)已高達(dá)每公斤數(shù)千美元,。
這次的基因分析顯示,黑松露中有一些特殊基因可以揭示其地理原產(chǎn)地,,比如生長(zhǎng)土壤等環(huán)境特性,。研究小組說,他們將其中的10個(gè)與產(chǎn)地有關(guān)的關(guān)鍵基因標(biāo)記納入了一個(gè)“黑松露數(shù)據(jù)銀行”,。這些基因標(biāo)記涵蓋了法國(guó),、意大利和西班牙50個(gè)地區(qū)發(fā)現(xiàn)的黑松露的遺傳特性,今后就可以幫助鑒別黑松露的原產(chǎn)地,。
另外,,基因測(cè)序結(jié)果顯示,黑松露有專門的基因編碼合成與其獨(dú)特味道有關(guān)的硫代謝物和氨基酸分解酶,,這意味著它的美味完全來自自身,,而不像之前許多研究人員認(rèn)為的那樣與其外部生長(zhǎng)環(huán)境中的微生物群有關(guān)。
基因測(cè)序還顯示,,黑松露含有與有性繁殖有關(guān)的基因,,而以前人們只嘗試用無性繁殖的方式來培植黑松露,,研究人員因此建議可以兩種方法并用,以探索有效的人工培植手段,。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature 28 March 2010 |doi:10.1038/nature08867
Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis
Francis Martin1, Annegret Kohler1, Claude Murat1, Raffaella Balestrini2, Pedro M. Coutinho3, Olivier Jaillon4,5,6, Barbara Montanini7, Emmanuelle Morin1, Benjamin Noel4,5,6, Riccardo Percudani7, Bettina Porcel4,5,6, Andrea Rubini8, Antonella Amicucci9, Joelle Amselem10, Véronique Anthouard4,5,6, Sergio Arcioni8, François Artiguenave4,5,6, Jean-Marc Aury4,5,6, Paola Ballario11, Angelo Bolchi7, Andrea Brenna11, Annick Brun1, Marc Buée1, Brandi Cantarel3, Gérard Chevalier12, Arnaud Couloux4,5,6, Corinne Da Silva4,5,6, France Denoeud4,5,6, Sébastien Duplessis1, Stefano Ghignone2, Benoît Hilselberger1,10, Mirco Iotti13, Benoît Marçais1, Antonietta Mello2, Michele Miranda14, Giovanni Pacioni15, Hadi Quesneville10, Claudia Riccioni8, Roberta Ruotolo7, Richard Splivallo16, Vilberto Stocchi9, Emilie Tisserant1, Arturo Roberto Viscomi7, Alessandra Zambonelli13, Elisa Zampieri2, Bernard Henrissat3, Marc-Henri Lebrun17, Francesco Paolocci8, Paola Bonfante2, Simone Ottonello7 & Patrick Wincker4,5,6
INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, 54280 Champenoux, France
Istituto per la Protezione delle Piante del CNR, sez. di Torino and Dipartimento di Biologia Vegetale, Università degli Studi di Torino, Viale Mattioli, 25, 10125 Torino, Italy
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS-Universités Aix-Marseille I & II, 13288 Marseille, France
CEA, IG, Genoscope, 2 rue Gaston Crémieux CP5702, F-91057 Evry, France
CNRS, UMR 8030, 2 rue Gaston Crémieux, CP5706, F-91057 Evry, France
Université d’Evry, F-91057 Evry, France
Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
CNR-IGV Istituto di Genetica Vegetale, Unità Organizzativa di Supporto di Perugia, via Madonna Alta, 130, 06128 Perugia, Italy
Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino, Via Saffi 2 - 61029 Urbino (PU), Italy
INRA, Unité de Recherche Génomique Info, Route de Saint-Cyr, 78000 Versailles, France
Dipartimento di Genetica e Biologia Molecolare & IBPM (CNR), Università La Sapienza, Roma, Piazzale, A. Moro 5, 00185 Roma, Italy
INRA, UMR Amélioration et Santé des Plantes, INRA-Université Blaise Pascal, INRA – Clermont-Theix, 63122 Saint-Genes-Champanelle, France
Dipartimento di Protezione e Valorizzazione Agroalimentare, Università degli Studi di Bologna, 40 126 Bologna, Italy
Dipartimento di Biologia di Base ed Applicata,
Dipartimento di Scienze Ambientali, Università degli Studi dell’Aquila, Via Vetoio Coppito 1 - 67100 L’Aquila, Italy
University of Goettingen, Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, D-37077 Goettingen, Germany
INRA, UMR BIOGER-CPP, INRA-Grignon, av Lucien Brétignières - 78850 Thiverval Grignon, France
The aPérigord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today’s truffle market1, 2. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont3 endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a ‘symbiosis toolbox’4. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species5. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at ~125?megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ~58% of the genome. In contrast, this genome only contains ~7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis—‘the symbiosis toolbox’—evolved along different ways in ascomycetes and basidiomycetes.