據(jù)4月30日的《科學(xué)》雜志報(bào)道說(shuō),, 對(duì)首個(gè)已被測(cè)序的兩棲類基因組的一項(xiàng)新的分析顯示,,熱帶爪蟾(Xenopus tropicalis 生物醫(yī)藥大辭典提供翻譯)與人類基因組擁有相當(dāng)多的共性:所有人類基因中的有近80%的與遺傳性疾病有關(guān)的基因都可在熱帶爪蟾的基因中找到對(duì)應(yīng)處,。 這些發(fā)現(xiàn)表明,人們可以研發(fā)一種蛙類的模型來(lái)研究并更好地理解形形色色的人類疾病的分子機(jī)制,。
該研究可能還能提供人們有關(guān)為什么世界上蛙類種系繼續(xù)在快速地衰減的線索,。 熱帶爪蟾(Xenopus tropicalis)基因組中所含有的編碼蛋白的基因數(shù)目與人類基因組的數(shù)目差不多相同,它是人們?cè)趯?shí)驗(yàn)室中被研究得最充分的蛙類品種,,而且它被廣泛用作一種研究胚胎發(fā)育和細(xì)胞生物學(xué)的模型,。
Uffe Hellsten及其同僚對(duì)熱帶爪蟾的基因組進(jìn)行了深度的挖掘,他們?cè)谄浠蚪M中發(fā)現(xiàn)并分析了那些排序和人類及雞類基因組相同的基因區(qū)域(被稱作保守同線性),。這些共同的區(qū)域主要是一個(gè)古老的,、有3億6000萬(wàn)年之久的基因組的一些片斷;它們來(lái)自曾經(jīng)在地球上存在過(guò)的所有哺乳類動(dòng)物,、鳥(niǎo)類,、蛙類、蠑螈類及恐龍類的最后的共同祖先,。蛙類和其它的兩棲類還受到來(lái)自環(huán)境中毒素以及其棲息地變化的打擊,;它們被認(rèn)為是前哨生物,因?yàn)樗鼈儗?duì)環(huán)境中的或是來(lái)自食物的污染物極端敏感,。應(yīng)用基因組學(xué)的方法來(lái)觀察蛙類對(duì)環(huán)境挑戰(zhàn)的反應(yīng)也許可幫助保護(hù)它們的多元性,。(生物谷Bioon.com)
PLoS ONE:罕見(jiàn)青蛙用超聲波互相交流
印尼雨林寒冷急流發(fā)現(xiàn)無(wú)肺青蛙
生物谷推薦原文出處:
Science DOI: 10.1126/science.1183670
The Genome of the Western Clawed Frog Xenopus tropicalis
Uffe Hellsten,1,* Richard M. Harland,2 Michael J. Gilchrist,3 David Hendrix,2 Jerzy Jurka,4 Vladimir Kapitonov,4 Ivan Ovcharenko,5 Nicholas H. Putnam,6 Shengqiang Shu,1 Leila Taher,5 Ira L. Blitz,7 Bruce Blumberg,7 Darwin S. Dichmann,2 Inna Dubchak,1 Enrique Amaya,8 John C. Detter,9 Russell Fletcher, 2 Daniela S. Gerhard,10 David Goodstein,1 Tina Graves,11 Igor V. Grigoriev,1 Jane Grimwood,1,12 Takeshi Kawashima,2,13 Erika Lindquist,1 Susan M. Lucas,1 Paul E. Mead,14 Therese Mitros,2 Hajime Ogino,15 Yuko Ohta,16 Alexander V. Poliakov,1 Nicolas Pollet,17 Jacques Robert,18 Asaf Salamov,1 Amy K. Sater,19 Jeremy Schmutz,1,12 Astrid Terry,1 Peter D. Vize,20 Wesley C. Warren,11 Dan Wells,19 Andrea Wills,2 Richard K. Wilson,11 Lyle B. Zimmerman,21 Aaron M. Zorn,22 Robert Grainger,23 Timothy Grammer,2 Mustafa K. Khokha,24 Paul M. Richardson,1 Daniel S. Rokhsar1,2
The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
1 Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
2 Center for Integrative Genomics, University of California Berkeley, Berkeley, CA 94720, USA.
3 Division of Systems Biology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
4 Genetic Information Research Institute, Mountain View, CA 94043, USA.
5 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
6 Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
7 Department of Developmental and Cell Biology, 4410 Natural Sciences Building 2, University of California Irvine, Irvine, CA 92697–2300, USA.
8 The Healing Foundation Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
9 DOE Joint Genome Institute, Los Alamos, National Laboratory, Los Alamos NM 87545, USA.
10 Office of Cancer Genomics, National Cancer Institute, NIH, DHHS Bethesda, MD 20892, USA.
11 Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO 63108, USA.
12 Joint Genome Institute HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA.
13 Okinawa Institute of Science and Technology, 12-22, Suzaki, Uruma, Okinawa 904-2234, Japan.
14 Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, D4047C, Mailstop 342, Memphis, TN 38105, USA.
15 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan.
16 Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
17 Programme d’Epigénomique, CNRS, Genopole, Université d’Evry Val d’Essonne, F-91058 Evry, France.
18 Department of Microbiology and Immunology, Box 672, University of Rochester, Medical Center, Rochester, NY 14642, USA.
19 Department of Biology and Biochemistry, University of Houston, Houston, TX 77204–5001, USA.
20 Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
21 MRC National Institute for Medical Research, London NW7 1AA, UK.
22 Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
23 Department of Biology, Gilmer Hall, Post Office Box 400328, Charlottesville, VA 22904–4328, USA.
24 Department of Pediatrics and Genetics, Yale University School of Medicine, Post Office Box 208064, New Haven, CT 06520–8064, USA.