一個由數(shù)國科研人員組成的研究小組日前成功破譯了大麥的主要致病真菌——禾本科布氏白粉菌的基因組。這項成果將有助于人們了解真菌的特性,,從而研究出防治植物病蟲害的新方法,。
這項研究由美國、法國,、英國,、德國、丹麥等國的研究人員合作完成,。研究者在最新一期美國《科學(xué)》雜志上報告說,,真菌是植物的主要致病因素,,在漫長的進化過程中,,它們與植物之間形成了復(fù)雜的互動關(guān)系,。此次研究人員破譯了禾本科布氏白粉菌的基因組,,它僅包含6000個基因,是其他真菌基因組的一半,,其結(jié)構(gòu)遠(yuǎn)比想象中簡單,。
這種真菌由于缺乏一些關(guān)鍵基因,,甚至無法合成破壞植物細(xì)胞壁的蛋白質(zhì),,但它含有的大量基因卻能讓真菌蛋白質(zhì)輕而易舉地在植物細(xì)胞內(nèi)“落戶”,,為該真菌染色體的重組和復(fù)制提供便利,。
研究人員說,,禾本科布氏白粉菌之所以具有這樣的特性,,可能是因為其最初的適應(yīng)能力較強,,能輕易地在大麥作物上繁衍生長,,它也由此喪失了部分基因,完全依賴宿主存活,,這可以解釋為什么它并不會完全摧毀大麥,,而是與其共生。(生物谷Bioon.com)
生物谷推薦原文出處:
Science DOI: 10.1126/science.1194573
Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism
Pietro D. Spanu1,*, James C. Abbott1,?, Joelle Amselem2,15,?, Timothy A. Burgis1,?, Darren M. Soanes3,?, Kurt Stüber4,?, Emiel Ver Loren van Themaat4,?, James K. M. Brown5,?, Sarah A. Butcher1,?, Sarah J. Gurr6,?, Marc-Henri Lebrun15,?, Christopher J. Ridout5,?, Paul Schulze-Lefert4,?, Nicholas J. Talbot3,?, Nahal Ahmadinejad4, Christian Ametz1, Geraint R. Barton1, Mariam Benjdia4, Przemyslaw Bidzinski4, Laurence V. Bindschedler7, Maike Both1, Marin T. Brewer8, Lance Cadle-Davidson9,10,?, Molly M. Cadle-Davidson9, Jerome Collemare2,§, Rainer Cramer7, Omer Frenkel8, Dale Godfrey11, James Harriman9, Claire Hoede2, Brian C. King8, Sven Klages12, Jochen Kleemann4, Daniela Knoll4, Prasanna S. Koti4, Jonathan Kreplak2, Francisco J. López-Ruiz5, Xunli Lu4, Takaki Maekawa4, Siraprapa Mahanil9, Cristina Micali4, Michael G. Milgroom8, Giovanni Montana1, Sandra Noir4,||, Richard J. O’Connell4, Simone Oberhaensli13, Francis Parlange13, Carsten Pedersen11, Hadi Quesneville2, Richard Reinhardt12, Matthias Rott4, Soledad Sacristán14, Sarah M. Schmidt4,?, Moritz Sch?n4, Pari Skamnioti6, Hans Sommer4, Amber Stephens4, Hiroyuki Takahara4, Hans Thordal-Christensen11, Marielle Vigouroux6, Ralf We?ling4, Thomas Wicker13 and Ralph Panstruga4,*
Abstract
Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.