加拿大研究人員通過小鼠實(shí)驗(yàn)發(fā)現(xiàn),,是否活力充沛、熱愛運(yùn)動(dòng)非關(guān)勤奮與懶惰,,而由基因決定,。
研究報(bào)告由9月5日出版的美國(guó)《國(guó)家科學(xué)院院刊》(PNAS)發(fā)表。
加拿大麥克馬斯特大學(xué)醫(yī)學(xué)副教授格雷戈里·斯坦伯格帶領(lǐng)研究小組鎖定兩種活力基因,。這兩種基因控制骨骼肌中單磷酸腺苷活化蛋白激酶(AMPK)兩種成分的合成,。
這種酶存在于人體細(xì)胞中,調(diào)控線粒體數(shù)量,,而線粒體能夠調(diào)控人體能量代謝,,幫助肌肉將糖轉(zhuǎn)化為能量;如果這一過程受阻,,肌肉就無法正常發(fā)揮作用,。因此,體內(nèi)生成AMPK多的人,,精力更充沛,;而這種酶少的人容易疲憊。
研究人員將小鼠分為兩組,,關(guān)閉第一組小鼠身上的相關(guān)基因,,另一組小鼠正常。
研究人員讓兩組小鼠上滾輪,第二組在20分鐘內(nèi)跑動(dòng)1000米,,第一組快速跑動(dòng)大約40米后就賴著不動(dòng),。
美國(guó)微軟—全國(guó)廣播網(wǎng)(MSNBC)5日援引斯坦伯格的話報(bào)道:“小鼠看起來與它們的兄弟姐妹一樣,但數(shù)秒后,,我們就知道哪只有(那兩種)基因,,哪只沒有。”
斯坦伯格說:“小鼠愛跑,,正常小鼠能跑數(shù)英里,,那些肌肉中沒有那兩種基因的小鼠只能在大廳里跑一個(gè)來回。”
這是研究人員首次證實(shí)AMPK受兩種基因控制,,關(guān)閉這兩種基因會(huì)在極大程度上影響運(yùn)動(dòng)能力,。
盡管小鼠實(shí)驗(yàn)有助了解人體生物學(xué),但這項(xiàng)研究結(jié)果需要人體驗(yàn)證,。
研究人員說,,這一發(fā)現(xiàn)或有助解釋為何一些人連續(xù)工作數(shù)小時(shí)依然活力四射,一些人卻只愿當(dāng)個(gè)“沙發(fā)土豆”,,而且坐的時(shí)間越長(zhǎng)越不愿意動(dòng),,可能有助治療運(yùn)動(dòng)困難人群,,譬如肥胖癥,、哮喘病患者。
斯坦伯格說:“當(dāng)你成為肥胖人群中的一員,,或者久坐不動(dòng),,就會(huì)難以邁出健身第一步。不要到達(dá)那個(gè)階段,,但如果你已然這樣,,那不是基因缺陷,你可以做些事情去改變,。”
他說,,運(yùn)動(dòng)本身能夠促進(jìn)AMPK的生成,如果你強(qiáng)迫自己堅(jiān)持慢跑一段,,會(huì)發(fā)現(xiàn)跑得越來越輕松,。(生物谷 Bioon.com)
doi:10.1073/pnas.1105062108
PMC:
PMID:
AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
O'Neill, Hayley M.; Maarbjerg, Stine J.; Crane, Justin D.; Jeppesen, Jacob; J?rgensen, Sebastian B.; Schertzer, Jonathan D.; Shyroka, Olga; Kiens, Bente; van Denderen, Bryce J.; Tarnopolsky, Mark A.; Kemp, Bruce E.; Richter, Erik A.; Steinberg, Gregory R.
AMP-activated protein kinase (AMPK) β1 or β2 subunits are required for assembling of AMPK heterotrimers and are important for regulating enzyme activity and cellular localization. In skeletal muscle, α2β2γ3-containing heterotrimers predominate. However, compensatory up-regulation and redundancy of AMPK subunits in whole-body AMPK α2, β2, and γ3 null mice has made it difficult to determine the physiological importance of AMPK in regulating muscle metabolism, because these models have normal mitochondrial content, contraction-stimulated glucose uptake, and insulin sensitivity. In the current study, we generated mice lacking both AMPK β1 and β2 isoforms in skeletal muscle (β1β2M-KO). β1β2M-KO mice are physically inactive and have a drastically impaired capacity for treadmill running that is associated with reductions in skeletal muscle mitochondrial content but not a fiber-type switch. Interestingly, young β1β2M-KO mice fed a control chow diet are not obese or insulin resistant but do have impaired contraction-stimulated glucose uptake. These data demonstrate an obligatory role for skeletal muscle AMPK in maintaining mitochondrial capacity and contraction-stimulated glucose uptake, findings that were not apparent in mice with single mutations or deletions in muscle α, β, or γ subunits.