生物給報(bào)道:辛辛那提兒童醫(yī)院醫(yī)學(xué)中心(Cincinnati Children’s Hospital Medical Center)領(lǐng)導(dǎo)的一個(gè)國(guó)際研究小組將在1月22日的PNAS上發(fā)表論文,,稱p53基因調(diào)控網(wǎng)絡(luò)中的關(guān)鍵基因,也就是人類基因組的“衛(wèi)士”,,已在人類的進(jìn)化過(guò)程中得到強(qiáng)化,從而避免因DNA損傷而引發(fā)癌癥和各種類型的遺傳疾病。這是通過(guò)在人類基因組中增加額外的保護(hù)機(jī)制,,加強(qiáng)調(diào)控網(wǎng)絡(luò)來(lái)防止DNA損傷。因?yàn)檫z傳工程構(gòu)建的小鼠模式生物是研究人類疾病越來(lái)越強(qiáng)大的工具,,而嚙齒動(dòng)物并不具備有與人類相同的,、由進(jìn)化發(fā)展出的p53調(diào)控網(wǎng)絡(luò),所以該研究也強(qiáng)調(diào),,在解釋用嚙齒動(dòng)物模型研究得到的結(jié)果時(shí),,需要更周全的考慮。
辛辛那提兒童醫(yī)院的生物信息學(xué)研究員Anil Jegga說(shuō),,我們的結(jié)果之所以非常重要,,是因?yàn)閲X類動(dòng)物常常被用作模式生物來(lái)研究人類疾病的遺傳根源,例如研究DNA損傷劑對(duì)癌癥的影響,。盡管我們的研究顯示有必要對(duì)人類和嚙齒動(dòng)物間p53調(diào)控途徑的不同要加以留意,,但我們?nèi)匀徽J(rèn)為嚙齒動(dòng)物模型是非常重要的,它能幫助我們了解疾病發(fā)生的過(guò)程,。
在這項(xiàng)研究中,,Jegga和他的同事們用比較功能基因組學(xué)的方法系統(tǒng)地檢查特定基因啟動(dòng)子的短DNA序列,這些啟動(dòng)子元件像天線一樣起作用,,能接受來(lái)自p53指令,,對(duì)激活的p53作出反應(yīng),進(jìn)而增強(qiáng)目的基因的表達(dá)并在細(xì)胞核內(nèi)發(fā)揮作用,。通過(guò)將這些應(yīng)激元件與p53網(wǎng)絡(luò)中基因周圍將近50個(gè)不同結(jié)合位點(diǎn)比較,,并特別地研究14種(從斑馬魚到人類)修復(fù)DNA損傷的基因,研究人員發(fā)現(xiàn),,在進(jìn)化過(guò)程中它們功能發(fā)生的重要變化,。這14個(gè)種代表著約5億年的進(jìn)化分離,研究人員可以根據(jù)它來(lái)確定,,p53應(yīng)激元件的功能在新物種出現(xiàn)時(shí)如何保留下來(lái)或發(fā)生改變的,。Jegga博士說(shuō),研究人員意外地發(fā)現(xiàn),,對(duì)DNA代謝和修復(fù)相關(guān)的一些基因,,人類具有非常獨(dú)特的功能性反應(yīng),。研究人員說(shuō),一些基因的功能也為黑猩猩和恒河猴所共有,,但DNA的代謝與修復(fù)功能與嚙齒動(dòng)物則完全不同,。
對(duì)于人類來(lái)說(shuō),當(dāng)檢測(cè)到DNA損傷時(shí),,p53基因調(diào)控網(wǎng)絡(luò)就獲得額外的功能,,允許它減緩細(xì)胞的生長(zhǎng),起始DNA的修復(fù),,甚至在必要的時(shí)候啟動(dòng)細(xì)胞凋亡,。細(xì)胞凋亡,即p53基因網(wǎng)絡(luò)中程序化細(xì)胞死亡的能力,,被認(rèn)為在脊椎動(dòng)物的進(jìn)化過(guò)程中是保守的,,并且有可能是在脊椎動(dòng)物和無(wú)脊椎動(dòng)物分化時(shí)開始出現(xiàn)的。DNA的代謝和修復(fù)能力受p53的調(diào)控,,這種應(yīng)激特征可能在進(jìn)化歷史上出現(xiàn)得很晚,,所以只出現(xiàn)在靈長(zhǎng)類動(dòng)物中。
辛辛那提兒童醫(yī)院計(jì)算機(jī)醫(yī)學(xué)的副主任,、論文的合作者Bruce Aronow說(shuō),,事實(shí)上,人類中 DNA的代謝和修復(fù)基因都經(jīng)歷了這樣的演變,,可能反映出需要對(duì)DNA復(fù)制過(guò)程中的損傷進(jìn)行綜合分子調(diào)控,,以確保在復(fù)雜的分化、生長(zhǎng)和老化的過(guò)程中基因組的完整性,。
Aronow表示,,我們已知道,由于進(jìn)化適應(yīng),,不同物種會(huì)出現(xiàn)不同的策略來(lái)保護(hù)染色體結(jié)構(gòu)和DNA序列不被損傷。比方說(shuō),,與嚙齒動(dòng)物相比,,人類端粒更短。端粒是染色體末端,,含有許多高度重復(fù)的DNA,,能夠防止DNA損傷。更短的端粒使得人們對(duì)染色體的損傷更敏感,,但也增加了發(fā)展成為惡性腫瘤的風(fēng)險(xiǎn),。基因復(fù)制時(shí),,并不復(fù)制最末端的基因,,因此端粒就像鞋帶末端的鐵帽子一樣保護(hù)著DNA的結(jié)構(gòu),,防止其解開和丟失遺傳信息。
在陽(yáng)光下可以發(fā)現(xiàn)p53的功能差異,。曝露于陽(yáng)光中的紫外線會(huì)激活人類修復(fù)基因(Ddb2)對(duì)DNA損傷的反應(yīng),,然而在嚙齒動(dòng)物中同樣的基因不起作用。已有研究報(bào)告說(shuō),,嚙齒動(dòng)物并不經(jīng)常要避免陽(yáng)光損傷遺傳物質(zhì),,因?yàn)樗鼈兿矚g在夜間活動(dòng),而且還有皮毛保護(hù),。
Aronow說(shuō),,盡管這些進(jìn)化的意義還不是非常清楚,但我們的工作已經(jīng)說(shuō)明,,p53基因網(wǎng)絡(luò)調(diào)控的基因,,一直都有細(xì)化和演化。我們繼續(xù)進(jìn)行激動(dòng)人心的研究工作,,進(jìn)一步在遺傳工程構(gòu)建的小鼠中測(cè)試p53和端粒酶的改變帶來(lái)的綜合影響——端粒酶控制著端粒區(qū)DNA重復(fù)序列的長(zhǎng)度和穩(wěn)定性,。模式小鼠將成為研究人類癌癥更強(qiáng)大的工具,而p53基因調(diào)控網(wǎng)絡(luò)的更多信息有助于我們進(jìn)行預(yù)臨床研究,,進(jìn)而幫助預(yù)防癌癥,。
在進(jìn)行分析p53靶基因時(shí),該國(guó)際研究小組在14個(gè)脊椎動(dòng)物和無(wú)脊椎動(dòng)物物種,,利用對(duì)比DNA序列分析,、高級(jí)工程酵母的功能測(cè)試和小鼠細(xì)胞培養(yǎng)實(shí)驗(yàn),研究了47個(gè)p53的應(yīng)激元件,。來(lái)自美國(guó)國(guó)立癌癥研究所(National Institute for Cancer),、意大利熱那亞和國(guó)家環(huán)境衛(wèi)生科學(xué)研究所(National Institute of Environmental Health Sciences )的研究人員合作完成了這項(xiàng)研究。
生物谷推薦原始出處:
Published online before print January 10, 2008
Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0704694105
EVOLUTION
Functional evolution of the p53 regulatory network through its target response elements
Anil G. Jegga*,, Alberto Inga, Daniel Menendez, Bruce J. Aronow*,, and Michael A. Resnick,¶
*Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267; Molecular Mutagenesis Unit, National Institute for Cancer Research, 16132 Genoa, Italy; and Laboratory Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
Edited by Eviatar Nevo, University of Haifa, Haifa, Israel, and approved December 5, 2007 (received for review May 18, 2007)
Abstract
Transcriptional network evolution is central to the development of complex biological systems. Networks can evolve through variation of master regulators and/or by changes in regulation of genes within networks. To gain insight into meaningful evolutionary differences in large networks, it is essential to address the functional consequences of sequence differences in response elements (REs) targeted by transcription factors. Using a combination of custom bioinformatics and multispecies alignment of promoter regions, we investigated the functional evolution of REs in terms of responsiveness to the sequence-specific transcription factor p53, a tumor suppressor and master regulator of stress responses. We identified REs orthologous to known p53 targets in human and rodent cells or alternatively REs related to the established p53 consensus. The orthologous REs were assigned p53 transactivation capabilities based on rules determined from model systems, and a functional heat map was developed to visually summarize conservation of sequence and relative level of responsiveness to p53 for 47 REs in 14 species. Individual REs exhibited marked differences in transactivation potentials and widespread evolutionary turnover. Functional differences were often not predicted from consensus sequence evaluations. Of the established human p53 REs analyzed, 91% had sequence conservation in at least one nonprimate species compared with 67.5% for functional conservation. Surprisingly, there was almost no conservation of functional REs for genes involved in DNA metabolism or repair between humans and rodents, suggesting important differences in p53 stress responses and cancer development.