“金蟬脫殼”是人們熟知的一種生命現(xiàn)象,,自然界中許多動物都有這種換殼的本領(lǐng),。浙江大學化學系教授唐睿康帶領(lǐng)團隊的最新研究發(fā)現(xiàn),,這種“換殼”過程是受一個“開關(guān)”控制的:在“關(guān)”的信號下,,礦物在體內(nèi)儲存并為新殼準備,而當“開”的信號一出現(xiàn),,新殼就快速生成,。這一發(fā)現(xiàn)為科學家進一步研究仿生控制功能提供了一個樣本,讓生物材料的制備變得更加可控,。
相關(guān)論文Magnesium-aspartate-based Crystallization Switch Inspired from Shell Molt of Crustacean(受甲殼動物換殼啟發(fā)基于鎂-天冬氨酸的結(jié)晶開關(guān))發(fā)表在12月7日《美國科學院院報》上,。
課題組選取了日常環(huán)境中常見的甲殼動物——卷甲蟲(俗稱“西瓜蟲”)作為生物模型。卷甲蟲一生要經(jīng)歷數(shù)次換殼,。此前的研究發(fā)現(xiàn),,在換殼前體內(nèi)的參與成殼的碳酸鈣處于一種非晶態(tài),而在鎂離子的作用下,,這些不穩(wěn)定的非晶態(tài)的碳酸鈣保持在一種“亞穩(wěn)定狀態(tài)”,,從而可以作為礦化前體在生物體內(nèi)富集并存貯,為新殼的快速生成作好物質(zhì)準備,,這個生物準備期要持續(xù)2周左右,。但是,生物怎么能夠精確地啟動換殼程序,,使礦物從“亞穩(wěn)定狀態(tài)”在短時間內(nèi)完成結(jié)晶,,對科學家來說是一個謎。
唐??档恼n題組找到了這個“開關(guān)”,。他們對處于換殼時期的卷甲蟲進行了研究,發(fā)現(xiàn)富含酸性氨基酸如天冬氨酸的蛋白質(zhì)是另一個關(guān)鍵的信號,。在它的作用下,,卷甲蟲立即啟動換殼過程,促使處于準備狀態(tài)的礦物質(zhì)前體迅速走向“穩(wěn)定狀態(tài)”從而形成新殼,,在自然狀態(tài)下,,這個過程在短短的數(shù)小時之內(nèi)完成。
“事實上,,鎂離子和酸性蛋白質(zhì)共同構(gòu)成了一個生物界中‘開關(guān)’,。”唐??到忉屨f,動物的換殼過程可以理解為一個“結(jié)晶”的過程,,礦物質(zhì)在這個過程中經(jīng)歷了非穩(wěn)定態(tài),、亞穩(wěn)定態(tài)和穩(wěn)定態(tài)。鎂離子是一個“關(guān)”的信號,,暫時關(guān)閉了結(jié)晶過程,,延長了碳酸鈣非結(jié)晶狀態(tài);而酸性蛋白是一個“開”的信號,,它的出現(xiàn)結(jié)束了礦物的非結(jié)晶狀態(tài),促發(fā)了礦物質(zhì)的迅速結(jié)晶,。課題組通過鎂和酸性氨基酸在實驗室里成功地演示了這個結(jié)晶開關(guān),,還證明了這一原理還存在于磷酸鈣體系,具有普適性,。
唐??嫡f,人類在制備生物材料時可以從中獲得靈感,,制造出一種“仿生開關(guān)”,,這樣,生物材料的合成就可以變得更加可控,,制造出各種結(jié)構(gòu),、形態(tài)和功能的生物材料。這樣的“開關(guān)”原理也可以進一步發(fā)展用于控制人體內(nèi)的生理性礦化過程,,如骨,、牙的形成及病理性礦化如結(jié)石、血管鈣化等,。(生物谷Bioon.com)
生物谷推薦原始出處:
PNAS December 10, 2009, doi: 10.1073/pnas.0909040106
Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean
Jinhui Tao, Dongming Zhou, Zhisen Zhang, Xurong Xu and Ruikang Tang1
Center for Biomaterials and Biopathways and Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.