來自中科院遺傳與發(fā)育生物學研究所,,美國伊利諾斯大學的研究人員通過對魚類III型抗凍蛋白起源的研究,,獲得了基因新功能化機制研究的新進展,這一研究成果公布在《美國國家科學院院刊》(PNAS)雜志上,。
領導這一研究的是中科院遺傳與發(fā)育生物學研究所陳良標研究員,,陳良標研究員早年畢業(yè)于杭州大學生物系,曾在美國國立衛(wèi)生研究院從事博士后研究工作,,2004年入選中科院"百人計劃", 2006年獲國家杰出青年基金,。
眾所周知,基因加倍是新基因產(chǎn)生的主要原因,。然而,,為什么大多數(shù)加倍后的基因在進化過程中消失,而只有少數(shù)加倍后的拷貝被保留了下來并形成新的功能呢,?進化生物學家們曾提出了兩個模型試圖解釋新功能的起源,,一是Mutation During Non-functionality (MDN)模型,認為新功能是在原本沒有該項功能的基因通過加倍逐漸累積突變而來的,;另一個模型叫Escape from Adaptive Conflict (EAC),,認為新功能起源于某些原本具有雙功能的基因,在新的環(huán)境壓力下雙功能中原本無足輕重的一個功能受到自然選擇得到強化,,但這種強化導致對老功能的弱化因而產(chǎn)生適應性沖突,。
基因倍增解除了這種沖突,并為各拷貝對新,、老功能分別進行強化鋪平了道路,。由于很多蛋白具有主要功能以外的副功能,EAC被認為是基因新功能化的一個普遍的機制,,但是迄今為止還沒有完備的例子證實EAC模型的適用性,。
在這篇文章中,研究人員通過對魚類III型抗凍蛋白起源的研究,,闡明了原本存在于唾液酸合成酶(SAS)C-末端的微弱的冰晶結合能力,,是如何通過SAS基因倍增及N-端結構域的刪除而消除了SAS基因內(nèi)部唾液酸合成功能和冰晶結合功能之間的沖突,,并在幾千萬年前海洋冰凍環(huán)境的選擇壓力下進化出具有降低體液冰點功能的III型抗凍蛋白。
本項研究第一次用完整的實驗數(shù)據(jù)表明了EAC是新功能起源的重要機制,。EAC機制的確立對解釋新基因的起源過程和原始驅動力,,以及深刻了解基因組的進化具有重要的意義。(生物谷Bioon.com)
生物谷推薦原文出處:
PNAS doi: 10.1073/pnas.1007883107
Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict
Cheng Denga,b, C.-H. Christina Chengc,1, Hua Yea,b, Ximiao Heb, and Liangbiao Chena,1
The evolutionary model escape from adaptive conflict (EAC) posits that adaptive conflict between the old and an emerging new function within a single gene could drive the fixation of gene duplication, where each duplicate can freely optimize one of the functions. Although EAC has been suggested as a common process in functional evolution, definitive cases of neofunctionalization under EAC are lacking, and the molecular mechanisms leading to functional innovation are not well-understood. We report here clear experimental evidence for EAC-driven evolution of type III antifreeze protein gene from an old sialic acid synthase (SAS) gene in an Antarctic zoarcid fish. We found that an SAS gene, having both sialic acid synthase and rudimentary ice-binding activities, became duplicated. In one duplicate, the N-terminal SAS domain was deleted and replaced with a nascent signal peptide, removing pleiotropic structural conflict between SAS and ice-binding functions and allowing rapid optimization of the C-terminal domain to become a secreted protein capable of noncolligative freezing-point depression. This study reveals how minor functionalities in an old gene can be transformed into a distinct survival protein and provides insights into how gene duplicates facing presumed identical selection and mutation pressures at birth could take divergent evolutionary paths.