據(jù)國外媒體報道,,最新研究表明蜘蛛是世界上對振動最敏感的生物之一,僅次于蟑螂,。處于饑餓之中的蜘蛛對振動的敏感性更為強(qiáng)烈,,可以探察到最安靜的移動和氣流變化,以及接近無法探測到的振動,。
這項最新研究發(fā)表在英國皇家學(xué)會《界面》期刊上,,事實(shí)上蜘蛛的整個身體是一個敏感體,可以探測到所在路徑的任何事物,。世界知名蜘蛛研究專家弗列德里-巴斯是該研究合著作者,,他說:“蜘蛛身體上不同區(qū)域內(nèi)嵌著超過3000個應(yīng)變傳感器,,但多數(shù)位于腿部和復(fù)合器官上,例如鄰近腿部關(guān)節(jié)的振動接收體,。”
巴斯和研究負(fù)責(zé)人奧地利維也納大學(xué)神經(jīng)生物學(xué)家克萊門斯-沙伯,,以及基爾大學(xué)同事斯坦尼斯拉夫-古珀共同完成這項研究工作,他們使用白光干涉法來首次測試蜘蛛復(fù)雜的微力學(xué)變化,,這一過程結(jié)合了光學(xué)儀器的光波,,從而能夠探測到這種小動物非常精確的移動變化,例如蜘蛛應(yīng)變傳感器上的作用力,。蜘蛛的應(yīng)變傳感器上包含著可接收本地移動的琴形器官微型分叉,,科學(xué)家能夠以納米等級測量分叉的敏感性,發(fā)現(xiàn)伴隨著振動減弱,,分叉的敏感性也相應(yīng)減弱,。
沙伯和研究同事是對一只成年雌性大型中美流浪蛛進(jìn)行研究的,它的體積和令人印象深刻的捕獵才能,,非常適合于科學(xué)家研究蜘蛛的習(xí)性,,并且此前也曾對該物種研究過,。沙伯說:“我們的蜘蛛通過植物葉片接受振動,,通過植物和蜘蛛網(wǎng)傳遞的振動,如果是生物等級活動特征,,蜘蛛就會發(fā)動攻擊,。如果振動源顯示不是獵物參數(shù)信息,蜘蛛就會不發(fā)動攻擊或者逃跑,。”
因此蜘蛛可能探測到人類或者其它動物的存在,,但除非這些侵入者活動類似于典型的獵物,蜘蛛是不會發(fā)起攻擊的,?;谶@樣敏感的探測能力,蜘蛛經(jīng)常將時間用于沒有意義的狩獵中,,這與它們的敏感接受信息信息不相符合,。近期美國辛辛那提大學(xué)生物學(xué)家喬治-尤茲和同事希拉-戈登研究蜘蛛習(xí)性發(fā)現(xiàn),當(dāng)一些蜘蛛物種想要交配時,,會發(fā)出一種獨(dú)特的性吸引振動,,通常是在落葉上發(fā)出振動來吸引異性關(guān)注。蜘蛛的敏感探測能力并不受喧鬧環(huán)境的干擾影響,。
如果一只蜘蛛未“探測”到你的存在,,事實(shí)上它可能是已從視覺、嗅覺或者味覺上察覺到你,。沙伯解釋稱,,蜘蛛擁有很好的視力,,且對低亮度物體保持敏感性,但除了低瞬間分辨率條件下,。在蜘蛛觸須上一種叫做“須肢”的微型化學(xué)感應(yīng)毛發(fā)傳感器還可接收氣體,,雌性蜘蛛可釋放一種特殊的費(fèi)洛蒙香味來吸引雄性。蜘蛛還有更多的奇特習(xí)性,,通過這些獨(dú)特功能可以幫助科學(xué)家來研制新型裝置,,用于醫(yī)學(xué)、軍事,、商業(yè)和其它潛在產(chǎn)業(yè)應(yīng)用,。(生物谷 Bioon)
doi:10.1098/rsif.2011.0565
PMC:
PMID:
Force transformation in spider strain sensors: white light interferometry
Schaber, Clemens F.; Gorb, Stanislav N.; Barth, Friedrich G.
Scanning white light interferometry and micro-force measurements were applied to analyse stimulus transformation in strainsensors in the spider exoskeleton. Two compound or ‘lyriform’ organs consisting of arrays of closely neighbouring, roughlyparallel sensory slits of different lengths were examined. Forces applied to the exoskeleton entail strains in the cuticle,which compress and thereby stimulate the individual slits of the lyriform organs. (i) For the proprioreceptive lyriform organHS-8 close to the distal joint of the tibia, the compression of the slits at the sensory threshold was as small as 1.4 nmand hardly more than 30 nm, depending on the slit in the array. The corresponding stimulus forces were as small as 0.01 mN.The linearity of the loading curve seems reasonable considering the sensor's relatively narrow biological intensity rangeof operation. The slits' mechanical sensitivity (slit compression/force) ranged from 106 down to 13 nm mN?1, and gradually decreased with decreasing slit length. (ii) Remarkably, in the vibration-sensitive lyriform organ HS-10 onthe metatarsus, the loading curve was exponential. The organ is thus adapted to the detection of a wide range of vibrationamplitudes, as they are found under natural conditions. The mechanical sensitivities of the two slits examined in this organin detail differed roughly threefold (522 and 195 nm mN?1) in the biologically most relevant range, again reflecting stimulus range fractionation among the slits composing the array.