1月16日,,美國物理學(xué)家組織網(wǎng)報道,,法國國家科學(xué)研究中心的兩位科學(xué)家構(gòu)建出了一個可模擬土衛(wèi)六大氣環(huán)境的計算機模型,并確定土衛(wèi)六具有兩個不同的大氣邊界層,,比此前預(yù)想的更接近地球的大氣構(gòu)成,。相關(guān)研究報告發(fā)表在近期出版的《自然-地球科學(xué)》雜志上。
土衛(wèi)六是土星的六顆衛(wèi)星之一,體積約為地球的兩倍,,但它距太陽的距離卻比地球遠9倍,,因此它的溫度更低,約為零下180攝氏度,。長期以來,,土衛(wèi)六一直吸引著科學(xué)家的目光,因為它是目前太陽系內(nèi)唯一已知的,,具有稠密大氣層的衛(wèi)星,,學(xué)界都期望能夠在它上面找到某些形式的生命。而三架發(fā)往該區(qū)域的宇宙飛船所提供的信息,,更引起了科學(xué)家對于這顆衛(wèi)星的諸多猜測,。它們分別為發(fā)射于1981年的旅行者1號,2004年的卡西尼號和2005年發(fā)射的,、最終登陸土衛(wèi)六表面的惠更斯探測器,。盡管三架飛船收集了大量數(shù)據(jù),但科學(xué)家仍不能很好地了解土衛(wèi)六的大氣環(huán)境,。其十分粘稠,,以至于很難觀測到低層對流層到底處于什么狀況。
為了弄清楚這一事實,,研究人員融合三架飛船收集的數(shù)據(jù),,包括化學(xué)組成、沙丘運動以及風(fēng)速測量和云的形成等,,構(gòu)建出了一種新型三維計算機模型,。在進行模擬時,研究團隊清晰地發(fā)現(xiàn)土衛(wèi)六的大氣至少具有一個對流邊界層,,這部分被表面的摩擦和熱等因素所影響,,其高度可升至800米。此外,,他們也找到了由大氣環(huán)流季節(jié)性變化而形成的第二個邊界層的證據(jù),,其深度可達2000米。
這些發(fā)現(xiàn)令人倍感意外,,由于土衛(wèi)六和太陽的遙遠距離,,其被設(shè)想為只能在表層聚集極少的熱量,從而制約了大氣邊界層可能的影響,。而計算機模型表明,,其他的組成部分可能也在發(fā)揮作用。但這些都不能說明土衛(wèi)六上極可能存在著生命,,卻能為科學(xué)家撥開迷霧,,使其更了解土衛(wèi)六大氣層的內(nèi)部運作和溫度構(gòu)造等,。(生物谷 Bioon.com)
doi:10.1038/ngeo1374
PMC:
PMID:
Two boundary layers in Titan’s lower troposphere inferred from a climate model
Benjamin Charnay & Sébastien Lebonnois
Saturn’s moon Titan has a dense atmosphere, but its thermal structure is poorly known. Conflicting information has been gathered on the nature, extent and evolution of Titan’s planetary boundary layer—the layer of the atmosphere that is influenced by the surface—from radio-occultation observations by the Voyager 1 spacecraft and the Cassini orbiter, measurements by the Huygens probe and by dune-spacing analyses. Specifically, initial analyses of the Huygens data suggested a boundary layer of 300 m depth with no diurnal evolution, incompatible with alternative estimates of 2–3 km (refs ). Here we use a three-dimensional general circulation model, albeit not explicitly simulating the methane cycle, to analyse the dynamics leading to the thermal profile of Titan’s lowermost atmosphere. In our simulations, a convective boundary layer develops in the course of the day, rising to an altitude of 800 m. In addition, a seasonal boundary of 2 km depth is produced by the reversal of the Hadley cell at the equinox, with a dramatic impact on atmospheric circulation. We interpret fog that had been discovered at Titan’s south pole earlier as boundary layer clouds. We conclude that Titan’s troposphere is well structured, featuring two boundary layers that control wind patterns, dune spacing and cloud formation at low altitudes.