1月23日,,《美國科學(xué)院院報》(PNAS)上發(fā)表了由哥本哈根動物園、哥本哈根大學(xué)和奧胡斯大學(xué)等單位主導(dǎo)完成的“黑猩猩X染色體適應(yīng)性進(jìn)化研究成果”,。在此項(xiàng)研究中,研究人員構(gòu)建了目前最大的黑猩猩基因編碼區(qū)多態(tài)性數(shù)據(jù)庫,,并發(fā)現(xiàn)在黑猩猩的X染色體上存在大量的適應(yīng)性變異,。本研究成果在分子進(jìn)化和靈長類動物適應(yīng)性進(jìn)化研究史上是一個重要的里程碑,為人類與黑猩猩在遺傳進(jìn)化方面的研究奠定了重要的基礎(chǔ),。
黑猩猩可謂是現(xiàn)存與人類關(guān)系最為親密的“表兄弟”,。繼2001年人類基因組被成功破譯和2005年黑猩猩基因組測序完成之后,科學(xué)家們就已經(jīng)開始從遺傳差異方面對黑猩猩與人類展開諸多研究,,以望能從基因?qū)用嫔顚咏馕鰹楹稳祟惸X容量更大、為何人類能夠直立行走,,為何黑猩猩可以抵抗艾滋病病毒以及為何黑猩猩很少流產(chǎn)等問題,。
在本研究中,科研人員對來自非洲中部的12只黑猩猩的DNA樣本進(jìn)行外顯子測序研究,,并構(gòu)建了目前最大的黑猩猩基因編碼區(qū)多態(tài)性數(shù)據(jù)庫,。通過分析發(fā)現(xiàn),黑猩猩的X染色體上積累了大量的有益突變,。為什么X染色體會出現(xiàn)這種特殊的現(xiàn)象,?黑猩猩的性別是由X染色體和Y染色體共同決定的,雄性有1條X染色體和1條Y染色體,,雌性有2條X染色體,。在雌性個體中,當(dāng)1條X染色體上一個新的有益突變產(chǎn)生時,,如果它的表達(dá)比另一條X染色體上相同位置的原突變?nèi)?,那么這個新的有益突變便不會顯現(xiàn)出來,這就是我們所說的隱性基因會被顯性基因所抑制而不會表達(dá),,因此一個有益的隱性突變并不能直接給雌性個體的進(jìn)化帶來好處,。對于雄性個體來說,X染色體上產(chǎn)生的新突變就能夠立即表達(dá),,之后通過自然選擇的篩選,,適應(yīng)性較強(qiáng)的新的有益突變會遺傳下來。
研究人員還發(fā)現(xiàn),,在400萬-600萬年前人類和黑猩猩發(fā)生分化之后,,黑猩猩X染色體上1/3的突變都是有益突變,而其它的染色體的情況并非如此,,由此研究人員推斷,,大多數(shù)的有益突變是隱性的,這些有益的突變在某一段時期促進(jìn)了這個物種的進(jìn)化,。此外,,還發(fā)現(xiàn)在進(jìn)化過程中,,黑猩猩基因組中與免疫系統(tǒng)相關(guān)的一些重要基因突變,如能夠在一定程度上抵抗艾滋病病毒的基因,,由此研究人員推測疾病是黑猩猩適應(yīng)性進(jìn)化的重要影響因素之一,。
隨著高通量測序技術(shù)的飛速發(fā)展,科學(xué)家們對同一物種內(nèi)群體間或物種之間的基因變異進(jìn)行了大量的研究,,這為生物適應(yīng)性進(jìn)化的遺傳機(jī)制等進(jìn)化生物學(xué)相關(guān)研究帶來了前所未有的機(jī)遇,。生物進(jìn)化是在自然選擇的作用下,適應(yīng)性的遺傳變異延續(xù)下來的過程,。在進(jìn)化的過程中,,突變?yōu)楦鞣N群帶來了具有新遺傳變異的變種,而后自然選擇對它們進(jìn)行篩選,,適應(yīng)性較強(qiáng)的突變體則易存活并繁衍下來,,而適應(yīng)性相對較差的突變體則易被淘汰,正所謂“物競天擇,,適者生存”,。(生物谷Bioon.com)
doi:10.1073/pnas.1106877109
PMC:
PMID:
Extensive X-linked adaptive evolution in central chimpanzees
Christina Hvilsoma, Yu Qianc, Thomas Bataillonc, Yingrui Lid, Thomas Mailundc, Bettina Sallée, Frands Carlsena, Ruiqiang Lid, Hancheng Zhengd, Tao Jiangd and Mikkel Heide Schierupc
Surveying genome-wide coding variation within and among species gives unprecedented power to study the genetics of adaptation, in particular the proportion of amino acid substitutions fixed by positive selection. Additionally, contrasting the autosomes and the X chromosome holds information on the dominance of beneficial (adaptive) and deleterious mutations. Here we capture and sequence the complete exomes of 12 chimpanzees and present the largest set of protein-coding polymorphism to date. We report extensive adaptive evolution specifically targeting the X chromosome of chimpanzees with as much as 30% of all amino acid replacements being adaptive. Adaptive evolution is barely detectable on the autosomes except for a few striking cases of recent selective sweeps associated with immunity gene clusters. We also find much stronger purifying selection than observed in humans, and in contrast to humans, we find that purifying selection is stronger on the X chromosome than on the autosomes in chimpanzees. We therefore conclude that most adaptive mutations are recessive. We also document dramatically reduced synonymous diversity in the chimpanzee X chromosome relative to autosomes and stronger purifying selection than for the human X chromosome. If similar processes were operating in the human–chimpanzee ancestor as in central chimpanzees today, our results therefore provide an explanation for the much-discussed reduction in the human–chimpanzee divergence at the X chromosome.