馬薩諸塞大學(xué)安姆斯特分校的一隊化學(xué)工程師發(fā)現(xiàn)了一個小分子,,此小分子在被轉(zhuǎn)換為生物燃料時行為與纖維素一樣,。研究這個迷你纖維素分子第一次揭示了木材和草原牧草在在高溫轉(zhuǎn)化為生物燃料期間所發(fā)生的化學(xué)反應(yīng)。
這項新技術(shù)發(fā)現(xiàn)報道在2012年2月期的 Energy & Environmental Science上,并在Nature Chemistry上著重指出,。
這種迷你纖維素分子稱為α-環(huán)糊精,,解決了面對諸如熱解或氣化的高溫生物燃料過程的主要障礙之一。還不知道木材快速加熱并分解成氣體時所發(fā)生的復(fù)雜化學(xué)反應(yīng),。并且當(dāng)前的技術(shù)也不允許使用計算機模型來追蹤化學(xué)反應(yīng)的發(fā)生,,因為木材中分子太大,反應(yīng)也太復(fù)雜,。
通過研究更小的替代分子所取得的突破開辟了用計算機模擬來研究生物質(zhì)的可能性,。 通過計算,在實際纖維素中刺激化學(xué)反應(yīng)需要花1萬年時間,。用迷你纖維素的相同生物燃料反應(yīng)可在一個月內(nèi)做到,。
研究小組已將研究迷你纖維素所得的見解在理解木材化學(xué)反應(yīng)獲得明顯進展。使用更快的計算機模擬,,他們能追蹤他們可以跟蹤木材向化學(xué)蒸氣產(chǎn)品轉(zhuǎn)換的所有方式,。這些反應(yīng)包括創(chuàng)建造生物燃料生產(chǎn)的重要分子呋喃。
出現(xiàn)在木材內(nèi)的已發(fā)現(xiàn)的反應(yīng)將作為設(shè)計先進生物燃料反應(yīng)器的基礎(chǔ),。通過創(chuàng)造木材轉(zhuǎn)換的反應(yīng)模型,,科學(xué)家能設(shè)計生物質(zhì)反應(yīng)器來優(yōu)化理想化生物燃料生產(chǎn)的特異反應(yīng),。為了生物燃料的產(chǎn)生,,最大化生產(chǎn)呋喃的新途徑并最小化如CO2樣氣體的形成。
研究高溫生物量化學(xué)作用的稱為"薄膜熱解"的新實驗技術(shù)使迷你纖維素的發(fā)現(xiàn)成可能,。它包括創(chuàng)造構(gòu)成60%木材生物質(zhì)的纖維素層,,它非常薄,只有幾微米厚,。當(dāng)以攝氏一百萬度/分鐘的速度非常迅速加熱薄層時,,他們創(chuàng)造了作為生物燃料前體的揮發(fā)性化學(xué)物質(zhì)。
Paul Dauenhauer去年已獲得幾個知名的資助,。2011年5月,,他獲美國能源部的基礎(chǔ)能源科學(xué)5年80萬早期事業(yè)獎。這項資助為他在了解控制分解植物物質(zhì)成化學(xué)成分和燃料副產(chǎn)品過程的催化劑的研究提供了支持,。2011年2月,,他獲得美國國家自然科學(xué)基金在開展熱解基礎(chǔ)研究方面1年80萬的撥款。另外,,在2011年他還獲得3M公司的三年年輕教職員獎,。(生物谷bioon.com)
doi:10.1038/nchem.1259
PMC:
PMID:
Cellulose conversion: A promising pyrolysis
Anne Pichon
ABSTRACT Converting biomass into biofuels first involves breaking down solid biopolymers - in particular cellulose, which are long chains of glucose moieties that constitute up to 60% of biomass - into small fragments. These are typically light oxygenated species or furans that can subsequently be transformed into biofuels. Unfortunately, various experimental and theoretical limitations have hindered a good understanding of cellulose pyrolysis, and in turn the development of efficient large-scale processes. The problems include: the starting material is a heterogeneous condensed phase which slows heat transfer; the large number of reactions that occur in the solid, liquid and gas phases further complicates the reaction environment and thus analysis; and the size of cellulose molecules themselves makes molecular dynamics simulations too difficult.
doi:10.1039/C1EE02743C
PMC:
PMID:
Revealing pyrolysis chemistry for biofuels production: Conversion of cellulose to furans and small oxygenates
Matthew S. Mettler, Samir H. Mushrif, Alex D. Paulsen, Ashay D. Javadekar, Dionisios G. Vlachos, Paul J. DauenhauerP>
ABSTRACT Biomass pyrolysis utilizes high temperatures to produce an economically renewable intermediate (pyrolysis oil) that can be integrated with the existing petroleum infrastructure to produce biofuels. The initial chemical reactions in pyrolysis convert solid biopolymers, such as cellulose (up to 60% of biomass), to a short-lived (less than 0.1 s) liquid phase, which subsequently reacts to produce volatile products. In this work, we develop a novel thin-film pyrolysis technique to overcome typical experimental limitations in biopolymer pyrolysis and identify α-cyclodextrin as an appropriate small-molecule surrogate of cellulose. Ab initiomolecular dynamics simulations are performed with this surrogate to reveal the long-debated pathways of cellulose pyrolysis and indicate homolytic cleavage of glycosidic linkages and furan formation directly from cellulose without any small-molecule (e.g., glucose) intermediates. Our strategy combines novel experiments and first-principles simulations to allow detailed chemical mechanisms to be constructed for biomass pyrolysis and enable the optimization of next-generation biorefineries.