珊瑚蟲(chóng)在滿月時(shí)會(huì)大量排卵,科學(xué)家對(duì)其中的原因一直迷惑不解,。澳洲科學(xué)家近日通過(guò)遺傳分析發(fā)現(xiàn),,與一些昆蟲(chóng)和脊椎動(dòng)物一樣,珊瑚也要依靠一種光覺(jué)蛋白——藍(lán)光受體(cryptochromes)以按時(shí)排卵,。這一發(fā)現(xiàn)表明,,這種定時(shí)蛋白分子的存在時(shí)間比之前認(rèn)為的要早幾百萬(wàn)年。相關(guān)論文10月19日發(fā)表在《科學(xué)》上,。
之前有研究發(fā)現(xiàn),,一些物種,,比如水母,擁有簡(jiǎn)單的“眼睛”使它們能夠感受光,。珊瑚沒(méi)有類(lèi)似的專(zhuān)門(mén)器官,,但是它卻能按照月亮光線的變化定時(shí)排卵。這樣做的好處在于能夠最大化受精幾率,,并能使幼蟲(chóng)能更好地隨著潮汐擴(kuò)散,。長(zhǎng)期以來(lái),科學(xué)家一直想弄清,,在其它一些物種感受光過(guò)程中發(fā)揮功能的藍(lán)光受體是否在珊瑚中也起到了作用,。
在最新的研究中,澳大利亞昆士蘭大學(xué)的海洋生物學(xué)家Oren Levy和研究小組利用小鼠,、果蠅等動(dòng)物體內(nèi)的藍(lán)光受體基因片斷,,探測(cè)了多孔鹿角珊瑚(Acropora millepora)的基因組。研究人員發(fā)現(xiàn)了四種藍(lán)光受體基因并對(duì)其中兩種進(jìn)行了深入研究,,結(jié)果發(fā)現(xiàn),,這兩種基因與其它物種中的藍(lán)光受體基因存在遠(yuǎn)古親緣關(guān)系。研究人員推測(cè),,有可能正是這兩種基因幫助最初的珊瑚和水母產(chǎn)生了進(jìn)化,,從而能夠潛入海底深處以躲避太陽(yáng)的紫外線傷害。
研究人員監(jiān)測(cè)了一個(gè)月運(yùn)周期里這兩種基因的活動(dòng)情況,,以弄清它們是否遵循著一個(gè)特別的時(shí)間表,。結(jié)果發(fā)現(xiàn),在一天的時(shí)間里,,其中一個(gè)基因在黎明時(shí)分開(kāi)始大量表達(dá)蛋白,,另外一個(gè)則在中午十分活躍,到了晚上,,兩個(gè)基因都會(huì)沉寂下來(lái),。當(dāng)被24小時(shí)放置在黑暗中時(shí),兩個(gè)基因的活性會(huì)上下起伏波動(dòng),,證實(shí)了光線對(duì)它們的影響,。而且,其中一個(gè)基因在滿月的時(shí)候會(huì)完全開(kāi)啟,,表明它與珊瑚的產(chǎn)卵時(shí)間有重要關(guān)系,。
美國(guó)國(guó)家海洋和大氣局(U.S. National Oceanic and Atmospheric Administration)的Margaret Miller認(rèn)為,此次研究對(duì)于我們理解珊瑚的大量排卵有很好的幫助,。她同時(shí)希望此次發(fā)現(xiàn)能夠?yàn)榭茖W(xué)家提供線索,,以弄清加勒比海麋角珊瑚(elkhorn coral)無(wú)法正常排卵是自然現(xiàn)象還是環(huán)境壓力導(dǎo)致的結(jié)果。英國(guó)紐卡斯?fàn)柎髮W(xué)的海洋生物學(xué)家James Guest表示,,這一發(fā)現(xiàn)將有助于珊瑚礁保護(hù),。他說(shuō):“有性生殖可能是修復(fù)破損珊瑚礁最重要的過(guò)程,,所以理解珊瑚生殖時(shí)間的深層機(jī)制是非常重要的。”(科學(xué)網(wǎng) 梅進(jìn)/編譯)
原始出處:
Science 19 October 2007:
Vol. 318. no. 5849, pp. 467 - 470
DOI: 10.1126/science.1145432
Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora
O. Levy,1 L. Appelbaum,2 W. Leggat,1 Y. Gothlif,3 D. C. Hayward,4,6 D. J. Miller,5,6 O. Hoegh-Guldberg1,5
Hundreds of species of reef-building corals spawn synchronously over a few nights each year, and moonlight regulates this spawning event. However, the molecular elements underpinning the detection of moonlight remain unknown. Here we report the presence of an ancient family of blue-light–sensing photoreceptors, cryptochromes, in the reef-building coral Acropora millepora. In addition to being cryptochrome genes from one of the earliest-diverging eumetazoan phyla, cry1 and cry2 were expressed preferentially in light. Consistent with potential roles in the synchronization of fundamentally important behaviors such as mass spawning, cry2 expression increased on full moon nights versus new moon nights. Our results demonstrate phylogenetically broad roles of these ancient circadian clock–related molecules in the animal kingdom.
1 Centre for Marine Studies, University of Queensland, St. Lucia 4072 QLD, Australia.
2 Center for Narcolepsy and Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, USA.
3 Department of Neurobiochemistry, Faculty of Life Sciences, Tel Aviv University, Israel.
4 Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia.
5 Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, and University of Queensland, St. Lucia 4072 QLD, Australia.
6 ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra, ACT 2601, Australia.