許多人知道,,食蟲性蝙蝠在夜空中準確捕食,,依靠的是敏銳的聽覺而不是視力,。它與生俱來的回聲定位功能,,可以通過收發(fā)高頻聲判斷位置,,從而讓獵物無處藏身。那么,,究竟是體內(nèi)的什么物質(zhì),才讓食蟲性蝙蝠具備了如此神奇的聽覺呢,?近日,,華東師大的生命科學(xué)專家與英國學(xué)者為世人揭開了謎底,。他們在食蟲性蝙蝠的外耳毛細胞中,,發(fā)現(xiàn)了一個新鑒定的基因Prestin,,而正是這種基因所編碼的蛋白質(zhì),,才讓哺乳動物獲得了得天獨厚的聽覺,。
最新一期的美國《國家科學(xué)院院刊》(PNAS),刊登了華東師大張樹義教授帶領(lǐng)的研究組與英國倫敦大學(xué)斯蒂芬·羅西特博士等合作完成的題為《聽覺基因Prestin重新將回聲定位蝙蝠聚在一起》的研究成果,。據(jù)悉,,該文的第一作者李鋼也是華東師大學(xué)者,。
該研究表明,,在哺乳動物中,,回聲定位蝙蝠聽覺的頻率范圍在所有的哺乳動物中最寬廣,,其原因是一個新鑒定的基因Prestin所編碼的蛋白質(zhì),,在哺乳動物的外耳毛細胞放大機能上起到了“發(fā)動機”的作用,,而哺乳動物的高頻聽覺敏感性和選擇性,,同外耳毛細胞放大機制有著密不可分的聯(lián)系,。
為了探究Prestin基因與蝙蝠回聲定位之間的進化關(guān)系,張樹義教授帶領(lǐng)的研究團隊與英國學(xué)者合作,,系統(tǒng)地研究了這個基因在具有回聲定位能力的食蟲性蝙蝠和不具有回聲定位能力、以果實為食的蝙蝠之間的進化關(guān)系,。結(jié)果顯示,,所有具有回聲能力的蝙蝠的Prestin基因表現(xiàn)出很高的相似性。而且,,在恒頻蝙蝠——菊頭蝠科中,,Prestin基因受到顯著的正選擇作用。在這一特殊類群中,,與高頻聽覺敏感性和選擇性有密切聯(lián)系的Prestin基因的進化速度明顯加快,。這項研究結(jié)果說明,蝙蝠的高頻聽覺能力是相對獨立地進化出來的,。
蝙蝠隸屬于翼手目,,整個家族共有1117個物種,占獸類物種總數(shù)的20%左右,。蝙蝠根據(jù)形態(tài),、食性和是否具有回聲定位能力被分為舊大陸果蝠和食蟲蝙蝠,早期的形態(tài)學(xué)家也根據(jù)這些特征將蝙蝠分為大蝙蝠和小蝙蝠兩個亞目,。然而,,2005年,《科學(xué)》雜志的一篇基于分子證據(jù)的文章,,徹底推翻了這種傳統(tǒng)的分類方法——舊大陸果蝠和某些回聲定位蝙蝠、尤其是恒頻蝙蝠具有共同祖先,,而與另外的使用斜頻的回聲定位蝙蝠親緣關(guān)系較遠,。
據(jù)悉,張樹義教授帶領(lǐng)的研究組在先前的研究還發(fā)現(xiàn),,和發(fā)聲相關(guān)的Foxp2基因與蝙蝠回聲定位密切相關(guān)。此項研究再次顯示,,和聽覺相關(guān)的基因Prestin與蝙蝠回聲定位也密切相關(guān),。因此,這兩項研究成果,,系統(tǒng),、深入地揭示了蝙蝠回聲定位進化的分子機制。(生物谷Bioon.com)
生物谷推薦原始出處:
PNAS,,doi: 10.1073/pnas.0802097105,,Gang Li,Shuyi Zhang
The hearing gene Prestin reunites echolocating bats
Gang Li*, Jinhong Wang*, Stephen J. Rossiter?,?, Gareth Jones§, James A. Cotton?, and Shuyi Zhang
The remarkable high-frequency sensitivity and selectivity of the mammalian auditory system has been attributed to the evolution of mechanical amplification, in which sound waves are amplified by outer hair cells in the cochlea. This process is driven by the recently discovered protein prestin, encoded by the genePrestin. Echolocating bats use ultrasound for orientation and hunting and possess the highest frequency hearing of all mammals. To test for the involvement ofPrestin in the evolution of bat echolocation, we sequenced the coding region in echolocating and nonecholocating species. The resulting putative gene tree showed strong support for a monophyletic assemblage of echolocating species, conflicting with the species phylogeny in which echolocators are paraphyletic. We reject the possibilities that this conflict arises from either gene duplication and loss or relaxed selection in nonecholocating fruit bats. Instead, we hypothesize that the putative gene tree reflects convergence at stretches of functional importance. Convergence is supported by the recovery of the species tree from alignments of hydrophobic transmembrane domains, and the putative gene tree from the intra- and extracellular domains. We also found evidence that Prestinhas undergone Darwinian selection associated with the evolution of specialized constant-frequency echolocation, which is characterized by sharp auditory tuning. Our study of a hearing gene in bats strongly implicates Prestin in the evolution of echolocation, and suggests independent evolution of high-frequency hearing in bats. These results highlight the potential problems of extracting phylogenetic signals from functional genes that may be prone to convergence.