全球30多萬(wàn)種形形色色的開(kāi)花植物,,其演化多樣性可能很早之前就飛速發(fā)展了,。來(lái)自美國(guó)賓州大學(xué)的C. de Pamphilis教授聯(lián)合諸多科學(xué)家,發(fā)現(xiàn)植物的基因組早在幾億年前就起源了,,比我們估計(jì)的早了2億年,。
研究還認(rèn)為,,2億年前的植物基因多樣性大爆發(fā)可能為以后開(kāi)花植物的多樣性起了鋪墊作用,。研究小組為我們提供了豐富的基因數(shù)據(jù)和準(zhǔn)確的演化時(shí)間表,,這些資源可能改變生物學(xué)家對(duì)植物演化,,特別是開(kāi)花植物演化的看法。這項(xiàng)成果將發(fā)表在《自然》雜志上,。
多倍體花朵有豐富的多樣性
“我們起初做了相當(dāng)詳盡的基因組探究工作,材料包括9種已知的植物基因組和數(shù)百萬(wàn)個(gè)開(kāi)花植物新序列,,”de Pamphilis說(shuō),。“可以肯定的是,在開(kāi)花植物的歷史上,,發(fā)生了一個(gè)或數(shù)個(gè)重大突變,,并為它們?nèi)蘸蟮亩鄻有宰隽虽亯|。更值得注目的是,,這些重大變化是由同一機(jī)制引起的,,并非個(gè)別因素。”
分析過(guò)了基因組的證據(jù)后,,研究小組又投入研究了多倍性基因突變的兩個(gè)實(shí)例,,正是多倍性的出現(xiàn)改寫了開(kāi)花植物演化史。“多倍性是基因突變的產(chǎn)物,,植物獲得了雙倍或多倍的遺傳載體,,”賓州大學(xué)學(xué)生,研究的第一作者Y.Jiao說(shuō),。“跟脊椎動(dòng)物不同,,植物基因出現(xiàn)多倍化是不會(huì)致命的,相反還能帶來(lái)好處,。”,。在傳代過(guò)程中,那些多出來(lái)的基因會(huì)漸漸消失,,然而有些多倍基因會(huì)產(chǎn)生新功能,,為其它原有的序列“排憂解難”,使得整個(gè)基因組更有效率,、更精細(xì)化,。
雖然很久以前,植物基因組開(kāi)始演化的時(shí)候,,多倍現(xiàn)象就已經(jīng)產(chǎn)生了,,但生物學(xué)家們認(rèn)為開(kāi)花植物的多倍性在1.2-1.5億年前才逐漸出現(xiàn)。實(shí)際上,,有跡象表明開(kāi)花植物多倍性比我們估計(jì)的更早,。研究小組發(fā)現(xiàn)了兩個(gè)遠(yuǎn)古時(shí)期植物基因組的重大事件:其一是3.2億年前種子植物祖先的多倍現(xiàn)象,其二則是1.92-2.1億年前被子植物的多倍現(xiàn)象,,這幾乎比我們以前估測(cè)的早了2億年,。
De Pamphilis教授認(rèn)為,,這幾次多倍現(xiàn)象可能推動(dòng)了植物基因組的“文藝復(fù)興”,現(xiàn)在萬(wàn)紫千紅的植物世界就是很好的證明,。“數(shù)億年前的多倍化使得植物基因組精彩紛呈,,被子植物們抓住了機(jī)會(huì),變得如此豐茂和精美,。”他的研究團(tuán)隊(duì)目前已經(jīng)能追蹤被子植物關(guān)鍵基因的演化了,。“這些新基因,有的能帶來(lái)實(shí)實(shí)在在的革新,,最終成為調(diào)節(jié)花朵發(fā)育的中流砥柱,。如果沒(méi)有多倍化,就沒(méi)有新基因,,開(kāi)花植物就不會(huì)像今天這樣繁榮興盛,。”他總結(jié)道。
兩次多倍現(xiàn)象帶來(lái)的好處并不止這些,。擁有了多倍基因組,,被子植物還能夠克服惡劣環(huán)境,甚至戰(zhàn)勝集群滅絕,,這是一個(gè)絕對(duì)優(yōu)勢(shì),。例如,在那場(chǎng)白堊紀(jì)末的滅絕事件中,,產(chǎn)生了多倍現(xiàn)象的多個(gè)被子植物類群都得以幸存,,但大量其它動(dòng)植物都永遠(yuǎn)消亡了。
“眾所周知,,達(dá)爾文將被子植物化石記錄中表現(xiàn)出來(lái)的快速分異現(xiàn)象稱作‘討厭之謎’,,現(xiàn)在我們終于一步步揭開(kāi)了它,”de Pamphilis說(shuō),。“我們從前說(shuō),,大部分被子植物都得益于遠(yuǎn)古時(shí)代的基因多倍現(xiàn)象。現(xiàn)在通過(guò)追本溯源,,我們有信心承認(rèn),,所有的被子植物都來(lái)源于基因多倍化,這幾次多倍化現(xiàn)象可稱作開(kāi)花植物的‘宇宙大爆炸’”,。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature09916
Ancestral polyploidy in seed plants and angiosperms
Yuannian Jiao,1, 2 Norman J. Wickett,2 Saravanaraj Ayyampalayam,3 André S. Chanderbali,4 Lena Landherr,2 Paula E. Ralph,2 Lynn P. Tomsho,5 Yi Hu,2 Haiying Liang,6 Pamela S. Soltis,7 Douglas E. Soltis,4 Sandra W. Clifton,8 Scott E. Schlarbaum,9 Stephan C. Schuster,5 Hong Ma,1, 2, 10, 11 Jim Leebens-Mack3 & Claude W. dePamphilis1, 2
Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms1, 2, 3, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications4, 5, 6, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications—one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.