跳蛛是一類主要以蒼蠅為食的蜘蛛,。它的捕食方式十分獨(dú)特,首先逐步靠近,當(dāng)?shù)竭_(dá)合適的位置時(shí),,再一躍跳過去捕獲獵物。日本一個(gè)研究小組最新發(fā)現(xiàn),,跳蛛這種“穩(wěn),、準(zhǔn)、狠”的捕食功夫要?dú)w功于它們擁有的一套獨(dú)特的視覺系統(tǒng),。
大多數(shù)生物或是通過調(diào)節(jié)眼睛中晶狀體的焦距視物(例如人類的雙目立體視覺系統(tǒng)),,或是靠移動(dòng)頭部制造一種“運(yùn)動(dòng)視差”來評(píng)估與某個(gè)物體的距離,。雖然跳蛛有8只眼,其中有4只在頭部上方密集排列,,包括兩只大大的主眼和兩只較小的側(cè)眼,,但無法通過調(diào)節(jié)眼睛中晶狀體的焦距視物,也不具備制造“運(yùn)動(dòng)視差”的本領(lǐng),。那么視力極佳的跳蛛到底是如何評(píng)估距離,、感知深度的呢?
日本研究人員在新一期美國《科學(xué)》雜志上報(bào)告說,,他們發(fā)現(xiàn)跳蛛的視覺系統(tǒng)能很好地利用光線中的綠光,,形成獨(dú)特的圖像散焦機(jī)制。在捕捉獵物時(shí),,跳蛛的側(cè)眼首先感知到運(yùn)動(dòng)中的目標(biāo),,然后再靠主眼瞄準(zhǔn)。跳蛛主眼的視網(wǎng)膜有4個(gè)感光細(xì)胞層,,其中下面兩層含有對(duì)綠光敏感的色素,。
不過,由于各個(gè)感光細(xì)胞層與晶狀體之間的距離不同,,入射光線中的綠光只能在最下面一層上聚焦,,而倒數(shù)第二層雖然也對(duì)綠光敏感,但卻不能清晰聚焦,,只能形成模糊的圖像,。研究人員分析后認(rèn)為,跳蛛正是通過對(duì)比這兩層的圖像,、并根據(jù)模糊圖像的散焦程度推算出與獵物之間的真實(shí)距離,。
為驗(yàn)證這一點(diǎn),研究人員將跳蛛以及若干果蠅一起放置在不同的光線環(huán)境下,。如果綠光是跳蛛視覺系統(tǒng)的關(guān)鍵因素,,那么在缺乏綠光的光線環(huán)境中,跳蛛將成為“睜眼瞎”,,根本抓不到獵物,。結(jié)果果真如此。
研究人員說,,他們尚不清楚是否還有其他動(dòng)物也有類似的視覺系統(tǒng),。他們認(rèn)為,這一新發(fā)現(xiàn)將有助于研發(fā)適用于機(jī)器人的新型視覺系統(tǒng),。(生物谷 Bioon.com)
doi:10.1126/science.1211667
PMC:
PMID:
Depth Perception from Image Defocus in a Jumping Spider
Takashi Nagata, Mitsumasa Koyanagi, Hisao Tsukamoto, Shinjiro Saeki, Kunio Isono, Yoshinori Shichida, Fumio Tokunaga, Michiyo Kinoshita, Kentaro Arikawa, Akihisa Terakita,
The principal eyes of jumping spiders have a unique retina with four tiered photoreceptor layers, on each of which light of different wavelengths is focused by a lens with appreciable chromatic aberration. We found that all photoreceptors in both the deepest and second-deepest layers contain a green-sensitive visual pigment, although green light is only focused on the deepest layer. This mismatch indicates that the second-deepest layer always receives defocused images, which contain depth information of the scene in optical theory. Behavioral experiments revealed that depth perception in the spider was affected by the wavelength of the illuminating light, which affects the amount of defocus in the images resulting from chromatic aberration. Therefore, we propose a depth perception mechanism based on how much the retinal image is defocused.