來自歐洲分子生物學(xué)實驗室,加拿大麥吉爾大學(xué)的研究人員發(fā)表了題為“Scaling of embryonic patterning based on phase-gradient encoding”的文章,,解釋了發(fā)育過程中,,生物如何維持身體比例這個有趣的問題,研究人員提出了一種新模型,,這種模型不同于之前的“時鐘和波前像差”模型,,認為胚胎利用振蕩性(周期性)基因活性來維持其比例,這種周期性基因活性對胚胎總體大小做出反應(yīng),,反過來又控制胚胎結(jié)構(gòu)的形成,。這一相關(guān)成果公布在1月Nature雜志上。
發(fā)育中的生物機體面臨著一種主要問題,,那就是如何調(diào)整其身體比例,,但是如何能“測量”組織大小呢?而且又是如何能將總體大小的信息傳遞給局部每個細胞的呢,?
盡管多年來科學(xué)家們對于這些問題十分感興趣,,但是目前關(guān)于尺寸的機械機理了解的還十分少。這篇文章在一種模擬脊椎動物胚胎早期分節(jié)的組織培養(yǎng)模型中發(fā)現(xiàn)了比例縮放,,這種二維模型的簡單性,,以及能實時進行觀察和操作的特性,都為研究脊椎動物分節(jié)打開了一扇新的窗口,。
脊椎動物的組織分部是在早期胚胎發(fā)育過程中進行的,,雖然物種間分部相差較大,但是同一物種的差別卻很小,,這項由由發(fā)育生物學(xué)家Jonathan Cooke領(lǐng)導(dǎo)完成的開創(chuàng)性研究發(fā)展了一種新模型,,在培養(yǎng)皿中體外培養(yǎng)中胚層細胞,從中可以觀察到中胚層模式形成,,以及體節(jié)形成,,比例縮放。
根據(jù)這一模型,,研究人員發(fā)現(xiàn)某個時間上,,體節(jié)形成位置是由分子濃度梯度決定的,這一梯度是根據(jù)距離后極(posterior pole)的固定距離定義的,,而且隨著胚胎延長,,朝著后極預(yù)定體節(jié)中胚層PSM向后移動。與此同時,,組織間基因表達的細胞自身振蕩,,也決定了分節(jié)形成的時間。這整個過程是根據(jù)由前向后的方向連續(xù)形成的。
也就是說,,胚胎利用振蕩性(周期性)基因活性來維持其比例,,這種周期性基因活性對胚胎總體大小做出反應(yīng),反過來又控制胚胎結(jié)構(gòu)的形成,。對于完整胚胎而言,,振蕩在相鄰細胞間是同步的,而這也許是通過Notch信號途徑的活性完成的,?;虮磉_的振蕩頻率降低了前PSM的推進,因此前細胞會比后細胞晚一些達到最大信號活性,,由此Notch活性模式似乎能從后PSM傳遞到前PSM,。這也是這一模型不同于之前的“時鐘和波前像差”模型之處。
體節(jié)形成是一個重要的模式脊椎動物發(fā)育生物學(xué)的形成過程中,。從實驗,,理論和計算生物學(xué)家,這一現(xiàn)象已得到了廣泛的關(guān)注,。已經(jīng)提出了許多數(shù)學(xué)模型的過程中,,在過去的十年里上升到突出的時鐘和波前像差機制。
此前曾提出過兩個體節(jié)形成多細胞的數(shù)學(xué)模型,。第一個是現(xiàn)象學(xué)相振子模型再現(xiàn)的時鐘和波前像差方面的體節(jié)形成,,但缺乏生物學(xué)的基礎(chǔ)。第二是生物知情的時滯微分方程模型的鐘波,,協(xié)調(diào)振蕩在許多細胞中的基因表達,。謹慎和有效的模型結(jié)構(gòu),參數(shù)估計和模型驗證,,識別重要的遺傳控制電路中的非線性機制體節(jié)發(fā)育時鐘,。特別是,分級管理結(jié)合差分衰減時鐘蛋白單體及二聚體的蛋白質(zhì)被發(fā)現(xiàn)是一個重要的機制減緩振蕩和產(chǎn)生基因表達的實驗觀察到的波,。(生物谷Bioon.com)
doi:10.1038/nature11804
PMC:
PMID:
Scaling of embryonic patterning based on phase-gradient encoding
Volker M. Lauschke, Charisios D. Tsiairis, Paul François & Alexander Aulehla
A fundamental feature of embryonic patterning is the ability to scale and maintain stable proportions despite changes in overall size, for instance during growth1, 2, 3, 4, 5, 6. A notable example occurs during vertebrate segment formation: after experimental reduction of embryo size, segments form proportionally smaller, and consequently, a normal number of segments is formed1, 7, 8. Despite decades of experimental1, 7 and theoretical work9, 10, 11, the underlying mechanism remains unknown. More recently, ultradian oscillations in gene activity have been linked to the temporal control of segmentation12; however, their implication in scaling remains elusive. Here we show that scaling of gene oscillation dynamics underlies segment scaling. To this end, we develop a new experimental model, an ex vivo primary cell culture assay that recapitulates mouse mesoderm patterning and segment scaling, in a quasi-monolayer of presomitic mesoderm cells (hereafter termed monolayer PSM or mPSM). Combined with real-time imaging of gene activity, this enabled us to quantify the gradual shift in the oscillation phase and thus determine the resulting phase gradient across the mPSM. Crucially, we show that this phase gradient scales by maintaining a fixed amplitude across mPSM of different lengths. We identify the slope of this phase gradient as a single predictive parameter for segment size, which functions in a size- and temperature-independent manner, revealing a hitherto unrecognized mechanism for scaling. Notably, in contrast to molecular gradients, a phase gradient describes the distribution of a dynamical cellular state. Thus, our phase-gradient scaling findings reveal a new level of dynamic information-processing, and provide evidence for the concept of phase-gradient encoding during embryonic patterning and scaling.