谷氨酸誘發(fā)培養(yǎng)的大鼠星形膠質細胞內鈣升高的機制研究
胡波1 孫圣剛1 何立銘2 張春光2 童萼塘1
(1.華中科技大學同濟醫(yī)學院附屬協(xié)和醫(yī)院神經科,,湖北武漢,430022;2.華中科技大學生物物理和生物化學研究所, 湖北 武漢,430030)
[摘要] 目的:研究谷氨酸對純化培養(yǎng)的大鼠星形膠質細胞的胞內鈣信號的影響及受體作用機制,。方法:用顯微熒光測量技術監(jiān)測星形膠質細胞內鈣信號的動態(tài)變化和谷氨酸對其影響,,觀察阻斷NMDA和/或AMPA受體,谷氨酸對胞內鈣信號影響的變化,。結果:谷氨酸明顯升高胞內游離鈣濃度,,NMDA和AMPA受體拮抗劑、 胞外鈣離子濃度的降低及鈣離子螯合劑均可不同程度地減弱其引發(fā)的胞內游離鈣離子升高程度,。結論:谷氨酸通過多種途徑影響星形膠質胞內鈣信號,,激活NMDA和AMPA受體是其中的重要機制之一。
[關鍵詞]星形膠質細胞 谷氨酸 NMDA受體 AMPA受體 [Ca2+]i
The mechanism of glutamate inducing intracellular calcium increase in cultured rats’ astrocytes
HU Bo1, SUN Seng-gang1, HE Li-ming2, ZHANG Chun-guang2, TONG E-tang1
(1. Neurology Department, union Hospital, Tongji Medical College, Huazhong Science and Technology University, Wuhan 430022; 2. Institute of Biophysics and Biochemistry, Huazhong Science and Technology University, Wuhan 430074,China)
[Abstract] Objective: To study the effect of glutamate on the intracellular calcium signal of cultured rat astrocytes and its mechanism. Methods: Using microfluorescent technique to detect the calcium signal and the effect of glutamate on it, observing its change upon the antagonization of NMDA and AMPA receptors simultaneously or respectively. Results: Glutamate can increase the intracellular free Ca2+ obviously, the antagonists of NMDA and AMPA receptors, the decrease of extracellular calcium concentration and the calcium chelator can attenuated the response at different extent. Conclusion: It is suggested that glutamate can affect intracellular calcium signal by complex mechanisms, the activation of NMDA and AMPA receptors is an important one of them.
[Key words] astrocytes; glutamate; NMDA receptor; AMPA receptor; [Ca2+]I
中樞神經系統(tǒng)中,,膠質細胞的數量幾乎占90%,,當中樞神經系統(tǒng)受損后會呈現出膠質化即膠質細胞增多的特征,然而對于其功能,,我們仍知之甚少,。近年來的研究顯示膠質細胞與神經元之間存在密切關系,已有足夠證據顯示神經元和膠質細胞間進行著頻繁的雙向交流[1],。神經元突觸末端釋放的神經遞質可作用于星形膠質細胞,,誘發(fā)其胞內游離鈣濃度( [Ca2+]i )升高。谷氨酸作為中樞神經系統(tǒng)內最重要的一種興奮性神經遞質,,已被證明在神經元和膠質細胞的雙向交流中起了舉足輕重的橋梁作用,。在生理條件下,神經元釋放的谷氨酸即可使膠質細胞內的[Ca2+]i升高,,并且Ca2+的這種變化可能參與了腦內的突觸形成,,長時程增強和谷氨酸能遞質依賴性事件[2]。最近的研究顯示,,膠質細胞內升高的游離鈣離子正是它釋放神經遞質的重要機制之一[3~4],。因此,研究谷氨酸作用于星形膠質細胞的具體機制對于理解神經元-膠質細胞的相互關系及重新評估膠質細胞在神經系統(tǒng)中的作用和地位是十分必要的,。
1 材料和方法
1.1 試劑和藥品 胎牛血清,,DMEM/F12由Gibco公司提供,HEPES, D-(-)-2-amino-5-
phosphonopentanoic acid [D-AP-5; N-methyl-D-aspartate (NMDA)受體的選擇性拮抗劑], 6-cyano-7-nitroquinoxaline-2,3-dione [ CNQX ; alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) 受體的選擇性拮抗劑], L-glutamate , poly-lysine , trypsin , EGTA, thapsigargin , 均由Sigma公司提供,。Fura-2/AM 由 Molecular Probe公司提供,。
1.2 細胞培養(yǎng) 按照Mc Carthy 和 Devellis的方法進行星形膠質細胞的原代培養(yǎng)[5]。出
生后1~3d的新生Sprague-Dawley大鼠由華中科技大學同濟醫(yī)學院實驗動物中心提供,。用乙醚麻醉后,,70%的乙醇消毒,取腦,,將皮質橫切為500-800 μm厚的腦片,,用0.25%的胰蛋白酶,,置于37℃、5% CO2的培養(yǎng)箱內消化30min,,獲得細胞懸液后種植到培養(yǎng)瓶內,。培養(yǎng)基成分為:78% DMEM/F12, 10% 小牛血清, 1% penicillin 和 streptomycin(100μg /ml)。在10%CO2 ,,pH = 7.2~7.3 和37℃的培養(yǎng)箱內培養(yǎng)7~9d后放入180rpm的恒溫搖床搖15h, 再將其傳代,,種在蓋玻片上,種植密度為5×105 ml-1,,3~7d后的細胞可用于實驗,。Glial fibrilary acidic protein(GFAP)陽性的細胞為星形膠質細胞,用免疫組織化學的方法鑒定本法培養(yǎng)的細胞中,,GFAP陽性細胞占98%,。
1.3 實驗系統(tǒng)設備 Fura-2熒光測鈣系統(tǒng)包括:倒置顯微鏡Axiovert 100 (Zeiss,Germany )、
單色燈光源75X-O(Ushio, Japan),、控制單元(T.I.L.L Photonics, Germany),、光導纖維和濾光片等。計算機通過與Pulse+Pulsefit8.0 (HEKA, Germany)捆綁的Fura軟件(HEKA,Germany)對控制單元進行控制,。F340/F380 的熒光比值被用來反映[Ca2+]i的變化[6],。
1.4 Fura-2熒光測鈣的基本原理 Fura-2是一種鈣結合熒光試劑,與鈣離子結合后,,激發(fā)波長發(fā)生改變,,由未結合鈣離子時的380nm移至340nm, 因此,分別測量340nm和380nm波長時Fura-2-Ca2+ 和Fura-2的熒光強度,,代入公式:[Ca2+]i=KdX(R-Rmin)/(Rmax-R)(Sf2/Sb2),便可以計算出細胞內游離鈣離子濃度,。本文中用F340/F380(即 fluorescence ratio)來反應[Ca2+]i的變化。
1.5 Fura-2的加載 Fura-2-5k 可直接通過膜片鉗電極向細胞內導入,,而對于Fura-2/AM則需要孵育處理才能使Fura-2加載到胞內,。本實驗中均采用Fura-2/AM孵育法加載Fura-2。
Fura-2/AM 50μg溶于50μl Pluronic 母液,,混合均勻,,制成1mmol/L fura-2/AM溶液。然后用10ml的細胞外液稀釋并以250ul體積分裝與eppendorf 管中,,放置到-20℃冰箱中保存,。在實驗皿中加入細胞外鹽溶液,然后用緩沖液沖洗一遍,,并將皿中溶液定量為0.5ml, 然后在避光條件下將Fura-2/Am母液解凍,,把250ul全部加入實驗皿之中。把實驗皿放入細胞培養(yǎng)箱中10~30min后取出,,再用緩沖液沖洗兩遍除去胞外多余Fura-2/AM后即可開始實驗[17],。
1.6 給藥方法 將D-AP-5,CNQX,谷氨酸等按實驗設計配置成高濃度的儲存液,使用時稀釋100倍或更高倍數,。其中水溶性藥物用Krebs-HEPHS液配制,,脂溶性藥品用二甲基
亞砜配制。
1.7 溶液 細胞外液成分為 (mmol/L): 標準胞外液的成分是(單位mmol/L):NaCl 140,,KCl 2,,MgCl2 1,CaCl2 2.5,,HEPES 10,,BSA 0.05%,葡萄糖40,; pH 為7.3,。在胞外無鈣時,用MgCl2來代替CaCl2,,但未加EGTA螯合劑,。
2 結果
2.1 谷氨酸誘發(fā)膠質細胞[Ca2+]i升高 在原代培養(yǎng)的星形膠質細胞中,82.5%的細胞對l-glutamate有反應(n =120),。[Ca2+]i的變化呈現出多種形式,,少數細胞熒光比值變化較小,而多數細胞的比值表現出明顯的升高,,在一些細胞上則出現鈣震蕩的形式(數據未展示),。
谷氨酸誘發(fā)的[Ca2+]i升高與谷氨酸的刺激時間相關,用100µmol/L的谷氨酸刺激同一個細胞,,每次刺激間隔大于10min,,隨著刺激時間的延長,熒光比值逐步增高,,且從峰值下降所需的時間也逐漸延長(n=7)(Fig 1A.),。
用不同濃度的谷氨酸刺激同一個細胞,每次刺激間隔大于15min,,隨著刺激濃度的升高,,熒光比值逐步增高;刺激濃度為50mmol/L時,,[Ca2+]i迅速,、極度升高,熒光比值居高不下,,提示細胞死亡,;EC50 大約為5mmol/L(n=7)(Fig 1B)。
Fig 1 L-glutamate elevate [Ca2+]i of astrocytes in normal calcium extracellular solution. A: When applied 100µm glutamate for 5s, 10s, 20s or 30s on the same cell at intervals of 15min at least to avoid receptor desensitization, the fluorescence ratio increased by time-dependent manner. B: Different concentration glutamate applied from 1µmol/L to 5mmol/L on the same cell for 10 s at intervals of 15min at least to avoid receptor desensitization, the fluorescence ratio increased with Glu concentration-dependent manner
2.2 NMDA受體在谷氨酸誘發(fā)反應中的作用 在所有對谷氨酸刺激有反應的細胞中,,由谷氨酸所誘發(fā)的胞內游離鈣的升高在79%的細胞可被100µmol/L D-AP-5明顯抑制,,但不能完全抑制(Fig 2A.), 而其余21%的細胞不能被明顯抑制(n=66),。這表明在正常含鈣外液中,谷氨酸對于星形膠質細胞的作用部分是通過NMDA受體來實現的,。同時,,NMDA可誘發(fā)的膠質細胞內[Ca2+]i的升高,該反應可被 NMDA受體抑制劑D-AP-5可逆性抑制(Fig 2B)( n=10),。
Fig 2A The effect of D-AP-5 to increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, applied 1mmol/L glutamate to stimulate cell for 5s, the fluorescence ratio increased obviously, When the same cell repetitively stimulated with 1mM Glu and 50µmol/L D-AP-5 simultaneously at intervals of 15min at least to avoid receptor desensitization, the elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be abolished completely
100µM D-AP-5
50μM NMDA
50μM NMDA
50μM NMDA
NMDA
30min
0.1 (Fluoresence Ratio)
50s
Fig 2B The effect of NMDA to astrocytic [Ca2+]i. In normal extracellular solution, 50μmol/L NMDA induced astrocytic [Ca2+]i increase obviously. When the same cell stimulated with 50μmol/L D-AP-5 and 50μmol/L NMDA simultaneously, no marked elevation of fluorescent ratio was showed. The same cell washed and stimulated more than 30 min later, the elevation of astrocytic [Ca2+]i recovered at some extent
2.3 非NMDA受體在谷氨酸誘發(fā)反應中的作用 在所有對谷氨酸刺激有反應的細胞中,,谷氨酸引發(fā)的胞內游離鈣的升高在83%的細胞可被45µmol/L CNQX明顯抑制(Fig 3), 而在其余17%的細胞中這種抑制反應并不顯著(n=70),。這表明在正常含鈣外液中,,谷氨酸對于星形膠質細胞的作用部分是通過非NMDA受體來實現的。
當在同一個細胞上同時運用NMDA和非NMDA 受體的拮抗劑時,,可見谷氨酸引發(fā)的胞內游離鈣的升高可被明顯抑制,,但仍有較小的反應存在(見Fig 4)(n=23),因而推測谷氨酸可能也通過其他途徑調節(jié)胞內鈣濃度的變化,,如代謝型谷氨酸受體等,。
在無鈣的細胞外液中,谷氨酸誘發(fā)的膠質細胞內游離鈣的升高幅度較在正常細胞外液中明顯減小,,NMDA受體選擇性拮抗劑D-AP-5和非NMDA 受體的拮抗劑CNQX可使之進一步下降,,但并不會使反應完全消失(見Fig 5)(n=11)。
Fig 3 The effect of CNQX no increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, when the cell stimulated repetitively with 1mmol/L Glu and 45 µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization , elevation of fluorescence ratio induced by glutamate were diminished obviously, but not be abolished entirely
Fig 4 The effect of CNQX and D-AP-5 to increased astrocytic [Ca2+]i induced by glutamate. In normal extracellular solution, when the cell stimulated repetitively with 1mmol/L Glu, 45µmol/L CNQX and 100µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization, elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be inhibited entirely.
Fig 5 The effect of CNQX and D-AP-5 no increased astrocytic [Ca2+]i induced by glutamate in 0 Ca2+ extracellular solution. When bath in 0 Ca2+ extracellular solution, stimulating cell with 1mmol/L Glu could induce astrocytic [Ca2+]i increase moderately, when the same cell stimulated repetitively with 45µmol/L CNQX and 100µmol/L CNQX simultaneously at intervals of 15min at least to avoid receptor desensitization, elevation of fluorescence ratio induced by glutamate was diminished obviously, but not be inhibited entirely
3 討論
當急性腦缺血或損傷時,,中樞神經系統(tǒng)內的興奮性/抑制性氨基酸平衡被打破,,組織內谷氨酸濃度急劇升高,神經元上的谷氨酸受體被過度激活,,引起胞內鈣超載和系列連鎖反應,,最終導致神經元死亡 [7~8]。已有研究證實此時鄰近的星形膠質細胞可參與過量谷氨酸的攝取,,保護神經元,,有人認為神經元胞外空間內的谷氨酸濃度和彌散度與它們周圍的星形膠質細胞覆蓋率密切相關[9~10],而星形膠質細胞對谷氨酸的攝取在病理和生理條件下都十分重要,。
Non-NMDA受體在谷氨酸誘發(fā)的[Ca2+]i的升高中起了部分作用,,CNQX作為AMPA/Kainate(non-NMDA)受體的高效選擇性拮抗劑可降低谷氨酸誘發(fā)的星形膠質細胞[Ca2+]i升高。有研究發(fā)現星形膠質細胞膜上表達具有Ca2+通透性的AMPA受體[11],,這與我們的結論相互支持,。Seifert等認為星形膠質細胞上激活AMPA受體所誘發(fā)的[Ca2+]i升高是通過可逆性Na(+)/Ca(2+)交換機制和胞內鈣庫釋放 Ca2+來共同實現的[12,13],。然而,,也有人認為AMPA和NMDA受體的激活并不會影響胞內的鈣庫釋放[14]。
Smith等提出星形膠質細胞上存在三種轉膜Ca2+內流機制:電壓門控 Ca2+通道(VGCCS),alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)亞型的谷氨酸受體和Na+/Ca2+ 交換[12],。而我們的研究結果顯示除此之外,,還存在NMDA亞型的谷氨酸受體參與其膜上的Ca2+轉運。NMDA可引起星形膠質細胞的[Ca2+]i的升高,,且該反應可被其選擇性NMDA受體拮抗劑D-AP-5可逆性抑致,,從而顯示星形膠質細胞上有NMDA受體存在并在鈣信號的調節(jié)中起重要作用;免疫組織化學和生理學的有關研究支持了我們的推論[16],。NMDA受體在星形膠質細胞的鈣動員中的作用仍需進一步研究。
谷氨酸誘發(fā)原代培養(yǎng)的星形膠質細胞內[Ca2+]i升高是濃度依賴型和時間依賴型的,。谷氨酸不僅激活non-NMDA和NMDA受體,,也引發(fā)了細胞的系列與胞內鈣動員相關的反應,如IP3的的合成增多,,而后者可激活IP3-敏感的鈣庫,。當NMDA和non-NMDA受體被其各自的選擇性拮抗劑阻斷,谷氨酸仍能引起星形膠質細胞的[Ca2+]i輕度升高,,這提示谷氨酸同樣可作用于G-蛋白偶聯的代謝型谷氨酸受體,,已有研究發(fā)現谷氨酸可通過代謝型谷氨酸受體誘導胞內鈣庫的鈣釋放,細胞內鈣庫的耗竭劑thapsigargin可抑制該受體激動劑所誘發(fā)的星形膠質細胞[Ca2+]i升高[18],,此外代謝型谷氨酸受體在星形膠質細胞上的表達已經得到證實[19],。另一方面,在無鈣的細胞外液中,,谷氨酸仍可誘發(fā)膠質細胞內游離鈣的升高,,這進一步證實谷氨酸引發(fā)的[Ca2+]I升高僅部分依賴于細胞外鈣,胞內鈣庫的釋放也是其重要的機制,;在無鈣條件下,,NMDA受體選擇性拮抗劑D-AP-5和非NMDA 受體的拮抗劑CNQX可使谷氨酸引發(fā)的[Ca2+]i升高幅度減小,這是否表明此兩種受體也影響胞內鈣庫對鈣離子的釋放和攝取,,有待進一步研究,。
我們的研究顯示:谷氨酸誘發(fā)的大鼠星形膠質細胞內[Ca2+]i升高是通過多途徑實現的,NMDA和非NMDA受體在此過程起重要作用,,而代謝型谷氨酸受體可能與胞內鈣庫的調節(jié)功能,。通過對膠質細胞谷氨酸受體參與鈣調控機制的研究,為我們進一步探索膠質細胞在神經系統(tǒng)信號傳導中的作用提供了重要線索,。由于鈣波和鈣振蕩可能是神經元與膠質細胞間信息交換的重要途徑,,因而對鈣傳導途徑的研究是神經系統(tǒng)生理功能的關鍵之一。
致謝 衷心感謝華中科技大學生物物理與生物化學研究所的徐濤教授和同濟醫(yī)學院腦研究所的劉仁剛教授,,周潔萍,、王珍老師在本研究中所提供的指導和幫助!
[參考文獻]
[1] Carmignoto G. Reciprocal communication systems between astrocytes and neurones[J]. Prog Neurobiol, 2000,62(6):561-581.
[2] Shelton MK, McCarthy KD. Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ[J]. Glia, 1999,26(1):1-11.
[3] Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cell[J]. J Neurobiol, 1999,41(2):221-229.
[4] Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons[J]. Proc Natl Acad Sci USA, 2000,97(15):8629-8634.
[5] Mc Carthy K, Devellis J. Preparation of separate astroglial and Oligodendroglial cultures from raty cerebral tissue[J]. J Cell Bio,1980,85(3):890-892.
[6] Chen LY, Zhou SB, Lou XL, et al. Different stimulatory opioid effects on intracellular Ca2+ in SH-SY5Y cells[J]. Brain res, 2000,882:256-265.
[7] Nishizawa. Glutamate release and neuronal damage in ischemia. Life Sci[J]. 2001,69(4):369-381.
[8] Koinig H, Vornik V, Rueda C, et al. Lubeluzole inhibits accumulation of extracellular glutamate in the hippocampus during transient global cerebral ischemia[J]. Brain Res, 2001,898(2):297-302.
[9] Chen Y, Vartiainen NE, Ying W, et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism[J]. J Neurochem., 2001,77(6):1601-1610.
[10] Oliet SHR., Piet R, Poulain DA.. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons[J].Science, 2001,292(5518):923-926.
[11] Iino M, Goto K, Kakegawa W, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia[J]. Science, 2001,292(5518):926-929.
[12] Smith JP, Cunningham LA, Partridge LD. Coupling of AMPA receptors with the Na+/Ca2+ exchanger in cultured rat astrocytes[J]. Brain Res, 2000,887(1):98-109.
[13] Seifert G, Zhou M, Steinhauser C. Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes[J]. J Neurophysiol, 1997,78(6):2916-2923.
[14] Ahmed Z, Lewis CA, Faber DS. Glutamate stimulates release of Ca2+ from internal stores in astroglia[J]. Brain Res, 1990,516(1):165-169.
[15] Schipke CG, Ohlemeyer C, Matyash M, et al. Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors[J]. FASEB J,2001,15(7):1270-1272.
[16] Nishizaki T, Matsuoka T, Nomura T, et al. Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes[J]. Biochem Biophys Res Com,1999,J259(3):661-664.
[17] Zhou Z, Matlib A, Bers DM. Cytosolic and mitochondrial Ca signals in mammalian ventricular myocytes[J]. J Physiol,1998,,507:379-403.
[18] Toms NJ, Roberts PJ. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology[J]. 1999, 38(10):1511-1517.
[19] Biber K, Laurie DJ, Berthele A, et al. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia[J]. J Neurochem., 1999,72(4):1671-1680.