神經(jīng)系統(tǒng)發(fā)育期細(xì)胞不對(duì)稱(chēng)分裂機(jī)制
符兆英,,王亞萍
(延安大學(xué)醫(yī)學(xué)院醫(yī)學(xué)系,陜西延安 716000)
摘要:細(xì)胞不對(duì)稱(chēng)分裂產(chǎn)生兩個(gè)不同命運(yùn)的子細(xì)胞,,是細(xì)胞多樣性形成的基礎(chǔ),。果蠅周?chē)窠?jīng)系統(tǒng)感覺(jué)剛毛由一個(gè)前體細(xì)胞按固定的程序不對(duì)稱(chēng)分裂而形成,。膜相關(guān)蛋白Numb是細(xì)胞命運(yùn)決定因子,。在細(xì)胞有絲分裂期,,Numb選擇性地分布于細(xì)胞的一側(cè),,在胞質(zhì)分裂后則被分配于一個(gè)子細(xì)胞,。Numb通過(guò)抑制跨膜受體Notch而發(fā)揮作用。Numb不對(duì)稱(chēng)分布由細(xì)胞極性分子控制,。這些極性分子在細(xì)胞有絲分裂前即定位于細(xì)胞的一極。除了指導(dǎo)命運(yùn)決定因子分布外,,細(xì)胞極性分子還與其他一些因子協(xié)同作用調(diào)節(jié)紡錘體定向,。紡錘體的排列方向必須與命運(yùn)決定因子的分布一致,才能保證后者只被分配到一個(gè)子細(xì)胞中去,。果蠅中樞神經(jīng)系統(tǒng)的發(fā)育起始于成神經(jīng)細(xì)胞(NB)從神經(jīng)外胚層的向下離層,。離層后的NB沿著與上皮細(xì)胞平面垂直的方向以干細(xì)胞樣方式分裂產(chǎn)生一個(gè)較大的位于頂部的NB和一個(gè)較小的位于底部的神經(jīng)節(jié)母細(xì)胞(GMC)。NB可沿頂-底軸以干細(xì)胞樣方式繼續(xù)分裂,,而GMC則只分裂一次產(chǎn)生兩個(gè)神經(jīng)元或膠質(zhì)細(xì)胞而不再分裂,。NB繼承了上皮細(xì)胞的頂-底極性,位于其頂部的細(xì)胞極性分子Bazooka,,DmPAR6和DaPKC使Inscuteable (Insc)蛋白,,Insc的伙伴分子(Pin)和G蛋白亞單元Gαi積聚于細(xì)胞頂部皮層而建立NB的頂部極性。頂部6分子復(fù)合體進(jìn)而調(diào)節(jié)細(xì)胞命運(yùn)決定因子及其銜接蛋白在細(xì)胞底部定位,,其中包括Prospero,,prospero mRNA,Staufen,,Miranda,,Numb和Numb伙伴分子(Pon)。底部分子在NB分裂后被分配到GMC,。Prospero是轉(zhuǎn)錄調(diào)節(jié)蛋白,,也是唯一已確定的NB不對(duì)稱(chēng)分裂決定因子;prospero mRNA起補(bǔ)充Prospero蛋白的作用;Staufen是RNA結(jié)合蛋白,,幫助prospero mRNA定位,;Miranda是引導(dǎo)Prospero和Staufen定位的銜接蛋白;Pon 結(jié)合于Numb并使之定位,;Numb在NB不對(duì)稱(chēng)分裂中的作用尚不清楚,。和周?chē)窠?jīng)系統(tǒng)一樣,NB紡錘體也必須準(zhǔn)確定向,,此定向亦由頂部分子調(diào)節(jié),。頂部6分子均不可少,而Insc是其中最主要的,。G蛋白信號(hào)傳導(dǎo)在將細(xì)胞極性信息轉(zhuǎn)變成命運(yùn)決定因子分布和紡錘體定向中起著重要作用,。越來(lái)越多的證據(jù)表明,一些參與無(wú)脊椎動(dòng)物細(xì)胞不對(duì)稱(chēng)分裂的因子在脊椎動(dòng)物中亦起作用,。哺乳類(lèi)的果蠅Numb同源分子m-Numb即是一個(gè)很好的例子,。和果蠅Numb一樣,m-Numb在細(xì)胞不對(duì)稱(chēng)分裂時(shí)亦分配到一個(gè)子細(xì)胞并決定該細(xì)胞命運(yùn),。然而,,m-Numb在脊椎動(dòng)物神經(jīng)系統(tǒng)發(fā)育中的作用遠(yuǎn)比在果蠅中要復(fù)雜。還需要做進(jìn)一步的工作,,以理解脊椎動(dòng)物細(xì)胞不對(duì)稱(chēng)分裂機(jī)制,。
關(guān)鍵詞:細(xì)胞不對(duì)稱(chēng)分裂;神經(jīng)系統(tǒng),;Numb,;Prospero;PAR蛋白
中圖分類(lèi)號(hào):Q28; R74 文獻(xiàn)標(biāo)識(shí)碼:A
收稿日期:--
基金項(xiàng)目: 通訊作者:符兆英 作者簡(jiǎn)介:符兆英(1969-),,男,,陜西佳縣人,教授,,碩導(dǎo),,從事神經(jīng)科學(xué)與免疫學(xué)研究. E-mail: 聯(lián)系電話(huà):0911-2414489
Mechanisms of asymmetric cell divisions during nervous system development
FU Zhao-ying, WANG Ya-ping.
(Department of Medicine, Medical College of Yanan University, Yan’an 716000 China)
Abstract: Asymmetric cell division produces two cells with different fates, and is essential to the generation of cell diversity. The sensory bristle of Drosophila peripheral nervous system develops from a single precursor cell that undergoes a stereotyped pattern of asymmetric cell divisions. Membrane associated protein Numb is the cell fate determinant in these cell divisions. During mitosis of each cell division, Numb is preferentially distributed to one side of the cell and is segregated to one of the two daughter cells after cytokinesis. Numb functions by inhibiting the transmembrane receptor Notch. The asymmetric distribution of Numb is controlled by the cell polarity molecules which accumulate in the appropriate pole of the cell before mitosis. Apart from regulating the location of cell fate determinant, the cell polarity molecules, in concert with some other factors, also direct the orientation of mitotic spindle so that it is well coordinated with the directional distribution of cell fate determinant. This guarantees that the cell fate determinant is correctly segregated to only one daughter cell. The central nervous system of Drosophila originates in the basal delamination of neuroblasts (NBs) from the neuroectoderm. The delaminated NBs divide perpendicularly to the epithelial plane and in a stem cell-like manner to produce a larger apical NB and a smaller basal ganglion mother cell (GMC). While NBs may undergo repeated A-B oriented stem cell-like divisions, each GMC divides only once to produce two neurons or glia and stop dividing. NB inherits its apical-basal polarity from the epithelium from which it is delaminated. The apically localized proteins Bazooka (Baz), DmPAR6 and DaPKC recruit Inscuteable (Insc) protein, partner of Insc (Pin), and a subunit of G protein, Gαi to the apical cell cortex and establish the apical polarity of NB. The apical six-molecule complex in turn regulates the basal localization of cell fate determinants and their adapter proteins, including Prospero, prospero mRNA, Miranda, Staufen, Numb, and partner of Numb (Pon). After NB division, these basal molecules are segregated into GMC. Prospero is a trascription factor and is the only defined cell fate determinant in NB asymmetric cell division; prospero mRNA seems to serve as a back-up system for Prospero protein; Staufen is a RNA-binding protein and helps to guide prospero mRNA localization; Miranda is an adapter protein that anchors both Prospero and Staufen to the basal cell cortex; Pon binds to and localizes Numb; Surprisingly, the function of Numb is not clear here. As in the periphery nervous system, the axis of spindle also needs to be correctly oriented and this is done by the apically localized molecules as well. While all six molecules are indispensable, Insc is both required and sufficient for the apical-basal arrangement of the mitotic spindle. G protein signaling plays an important role in interpreting cell polarity into determinant distribution and spindle orientation. There is increasing evidence that some elements of invertebrate asymmetric cell divisions also work in vertebrates. The mammalian homolog of Dosophila Numb (m-Numb) is one of the best examples. Like Dosophila Numb, m-Numb is also preferentially segregated to one daughter cell during asymmetric cell divisions and determines the fate of that cell. However, its functions in vertebrate nervous system development are more complicated than in Drosophila. Further work needs to be done to better understand the mechanisms of vertebrate asymmetric cell divisions.
Key words: asymmetric cell division; nervous system; Numb; Prospero; PAR proteins
細(xì)胞不對(duì)稱(chēng)分裂(asymmetric cell division)指母細(xì)胞分裂產(chǎn)生兩個(gè)具有不同命運(yùn)的子細(xì)胞,是細(xì)胞多樣性形成的基礎(chǔ),。細(xì)胞不對(duì)稱(chēng)分裂有內(nèi)在性和外在性機(jī)制,。內(nèi)在性機(jī)制指母細(xì)胞分裂時(shí)胞質(zhì)中決定細(xì)胞命運(yùn)的蛋白質(zhì)和/或核酸不對(duì)稱(chēng)地分布于細(xì)胞的一側(cè),并與細(xì)胞分裂的方向一致,,故細(xì)胞分裂后只有一個(gè)子細(xì)胞可獲得這些命運(yùn)決定因子,;或者是母細(xì)胞分裂時(shí)紡錘體或中體偏離細(xì)胞中央,故分裂后兩個(gè)子細(xì)胞大小不等,。外在性機(jī)制指兩個(gè)子細(xì)胞各自與其周?chē)?xì)胞相互作用,,或兩個(gè)子細(xì)胞間相互作用,從而獲得不同的增殖與分化信號(hào)。近七八年來(lái),,對(duì)模型生物如細(xì)菌,、酵母、線(xiàn)蟲(chóng)和果蠅細(xì)胞不對(duì)稱(chēng)分裂機(jī)制的研究取得了一系列有意義的成果,,并發(fā)現(xiàn)細(xì)胞不對(duì)稱(chēng)分裂機(jī)制在不同種生物間有保守性[1,2],。本文綜述了迄今研究最為深入的果蠅Drosophila melanogaster神經(jīng)系統(tǒng)發(fā)育期的細(xì)胞不對(duì)稱(chēng)分裂機(jī)制及模型生物細(xì)胞不對(duì)稱(chēng)分裂因子的同源分子在脊椎動(dòng)物神經(jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂中的作用。
1 果蠅周?chē)窠?jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂機(jī)制
1.1 感覺(jué)器官形成于細(xì)胞不對(duì)稱(chēng)分裂 果蠅周?chē)窠?jīng)系統(tǒng)感覺(jué)器官――感覺(jué)剛毛(sensory bristle),,由感覺(jué)器官前體細(xì)胞(sensory organ precursors, SOPs)不對(duì)稱(chēng)分裂形成[3],。pⅠ(precursor one)首先在表皮細(xì)胞平面內(nèi)沿前后(anterior-posterior, A-P)方向不對(duì)稱(chēng)分裂產(chǎn)生pⅡa和pⅡb兩個(gè)子細(xì)胞,,pⅡb在前,,pⅡa在后。隨之,,pⅡb從表皮細(xì)胞離層(delamination),,并在表皮細(xì)胞平面下沿著頂?shù)祝╝pical-basal, A-B)方向,不對(duì)稱(chēng)分裂為位于頂部的較大的pⅢb細(xì)胞和位于底部的較小的感覺(jué)器官膠質(zhì)細(xì)胞,。接著pⅡa又在表皮細(xì)胞平面內(nèi)沿A-P軸不對(duì)稱(chēng)分裂為一個(gè)在前的柄(shaft, Sf)細(xì)胞或毛(hair)細(xì)胞,,以及一個(gè)在后的窩(socket, So)細(xì)胞。最后,,pⅢb再沿A-B軸不對(duì)稱(chēng)分裂產(chǎn)生一個(gè)位于頂部的鞘(sheath,,Sh)細(xì)胞和一個(gè)位于底部的神經(jīng)元。而由pⅡb分裂產(chǎn)生的膠質(zhì)細(xì)胞,,則隨神經(jīng)元軸突的延伸,,移行離開(kāi)了感覺(jué)剛毛細(xì)胞簇。
1.2 Numb是SOP譜系細(xì)胞不對(duì)稱(chēng)分裂決定因子 Numb是一種膜相關(guān)蛋白,,其氨基端有一磷酸酪氨酸結(jié)合(PTB)域,。在pⅠ細(xì)胞中,Numb起初是均勻分布的,,在pⅠ有絲分裂的前期與中期,,Numb不對(duì)稱(chēng)地分布于細(xì)胞的一側(cè)形成新月體,在胞質(zhì)分裂時(shí)即被分配到一個(gè)子細(xì)胞中去,,獲得Numb的子細(xì)胞成為pⅡb細(xì)胞,,而另一個(gè)細(xì)胞則成為pⅡa細(xì)胞[4]。Numb在pⅡb,,pⅡa,,和pⅢb有絲分裂期間,亦形成新月體呈不對(duì)稱(chēng)分布,,并隨pⅡb分裂被分配于膠質(zhì)細(xì)胞,,隨pⅡa分裂被分配于Sf細(xì)胞,隨pⅢb分裂被分配到神經(jīng)元[3,5]。遺傳分析發(fā)現(xiàn)[4,5],,numb功能缺失突變時(shí),,上述細(xì)胞均失去不對(duì)稱(chēng)分裂特性,pⅠ分裂產(chǎn)生兩個(gè)pⅡa,,pⅡa產(chǎn)生兩個(gè)So,,pⅡb/pⅢb產(chǎn)生兩個(gè)Sh;另一方面,,當(dāng)numb過(guò)度表達(dá),,或在另一個(gè)子細(xì)胞中異位表達(dá)時(shí),結(jié)果恰好相反,。以上發(fā)現(xiàn)表明,,Numb是SOP譜系細(xì)胞不對(duì)稱(chēng)分裂的內(nèi)在性決定因子。
1.3 Numb通過(guò)抑制Notch 而發(fā)揮作用 Notch是一種跨膜受體,,普遍存在于果蠅和其他多細(xì)胞生物胚胎細(xì)胞,,可接受胞外信號(hào)而控制細(xì)胞分化。Numb通過(guò)抑制Notch而決定細(xì)胞命運(yùn),。SOP譜系細(xì)胞分裂時(shí),,Notch功能減低導(dǎo)致pⅡa轉(zhuǎn)變?yōu)閜Ⅱb,So轉(zhuǎn)變?yōu)镾f,,Sh轉(zhuǎn)變?yōu)樯窠?jīng)元,,與numb過(guò)度表達(dá)相似。而活化型Notch的表達(dá),,則導(dǎo)致與上述相反的結(jié)果,,與numb功能缺失突變的表現(xiàn)類(lèi)似。上位遺傳(genetic epistasis)實(shí)驗(yàn)發(fā)現(xiàn),,Notch的作用在numb下游,。以上發(fā)現(xiàn)[6,7]說(shuō)明,numb和Notch互為拮抗關(guān)系,,Numb通過(guò)抑制Notch而發(fā)揮決定細(xì)胞不對(duì)稱(chēng)分裂的作用,。
Numb抑制Notch的機(jī)制可能是通過(guò)α-銜接素(α-adaptin)介導(dǎo)Notch的細(xì)胞內(nèi)化。α-銜接素是一種與細(xì)胞內(nèi)化有關(guān)的蛋白質(zhì),,可與Numb結(jié)合,,在細(xì)胞內(nèi)的分布與Numb一致并依賴(lài)于Numb。變異的α-銜接素不能與Numb結(jié)合而不再不對(duì)稱(chēng)分布,,其結(jié)果的表現(xiàn)與numb功能缺失突變相似[8],。此外,Numb也可能是通過(guò)與Notch胞內(nèi)部分直接結(jié)合而抑制其作用,。體外研究發(fā)現(xiàn),,Numb氨基端PTB域可與Notch胞內(nèi)結(jié)構(gòu)域的RAM23區(qū)及羧基端序列結(jié)合,;若PTB域缺失,則Numb不再能抑制Notch活性,,盡管仍可不對(duì)稱(chēng)分布,。
1.4 Tramtrack 是Notch下游的轉(zhuǎn)錄抑制因子 細(xì)胞命運(yùn)的決定最終必須作用于基因表達(dá)的調(diào)控。Tramtrack(TTK)是一種鋅指轉(zhuǎn)錄抑制因子,,在Notch的下游作用,,可抑制SOP譜系細(xì)胞向神經(jīng)細(xì)胞方向分化,TTK功能缺失使感覺(jué)剛毛的支持細(xì)胞轉(zhuǎn)變?yōu)樯窠?jīng)元,,而異位表達(dá)則導(dǎo)致相反的結(jié)果[9],。TTK自身活性的調(diào)控在翻譯水平上,由反式作用蛋白Musashi(MSI)調(diào)控。MSI是一種RNA結(jié)合蛋白,,可與TTK mRNA 3’端非翻譯區(qū)(3’UTR)的順式作用序列結(jié)合而抑制其翻譯[10],。MSI蛋白在pⅡa和pⅡb細(xì)胞中均有表達(dá),但對(duì)TTK mRNA的翻譯抑制作用卻只在pⅡb細(xì)胞中出現(xiàn),,說(shuō)明pⅡa細(xì)胞中有一種機(jī)制抑制了其作用,,這一機(jī)制很可能是Notch信號(hào)的作用,。
1.5 細(xì)胞極性與命運(yùn)決定因子定位和紡錘體定向 細(xì)胞命運(yùn)決定因子在母細(xì)胞中的不對(duì)稱(chēng)分布必須與紡錘體排列的方向一致,,才能保證在細(xì)胞分裂后被分配到一個(gè)子細(xì)胞中去。此外,,感覺(jué)剛毛簇各細(xì)胞的空間排列位置都是固定的,,所以,細(xì)胞命運(yùn)決定因子還必須按相應(yīng)的極性定位才能保障被一定位置上的子細(xì)胞繼承,。研究表明,,細(xì)胞不對(duì)稱(chēng)分裂前,決定極性的分子首先在細(xì)胞一端的皮層(cell cortex)定位,,確立細(xì)胞的極性,,并指導(dǎo)命運(yùn)決定因子的定向分布和紡錘體按一定方向旋轉(zhuǎn)與排列。
SOP譜系起源于表皮細(xì)胞,,表皮細(xì)胞呈A-B極性,,其極性由位于頂部皮層的與線(xiàn)蟲(chóng)PAR (partioning defective)-3同源的Bazooka (Baz)蛋白,與線(xiàn)蟲(chóng)PAR-6同源的果蠅PAR-6 (DmPAR-6) 蛋白和果蠅非典型性蛋白激酶C(DaPKC)三種蛋白確立,。pⅠ細(xì)胞分裂前,,首先將A-B極性改建為A-P極性。其細(xì)節(jié)尚未搞清,,但根據(jù)已有資料[11,12] 可提出如下模式:首先是7次跨膜受體Frizzled(Fz)接受細(xì)胞外信號(hào),,使Discslarge(Dlg)蛋白在pⅠ前部粘連連接(adherens junction, AJ)下方的皮層出現(xiàn),接著Inscuteable(Insc) 蛋白伙伴分子(partner of Insc, Pin)與Dlg結(jié)合形成復(fù)合體,,初步確立細(xì)胞極性,。Dlg與Pin相互依存,,并使更多的Dlg與Pin在細(xì)胞前部皮層積聚;Pin又與Fz協(xié)同作用,,使Baz與DaPKC在pⅠ細(xì)胞后部的AJ下方定位,,從而確立了 pⅠ細(xì)胞在表皮細(xì)胞平面上的A-P極性。然后,,在Dlg-Pin和Baz的共同作用下,,使Numb及其伙伴分子(partner of numb, Pon)在細(xì)胞前部定位,并使紡錘體按A-P方向排列,。
以上各分子間作用的細(xì)節(jié)雖未搞清,,但已知在Fz下游有Dishevelled蛋白和Flamingo蛋白[13] 作用;在Pin下游有G蛋白作用[14],,G蛋白經(jīng)受體非依賴(lài)機(jī)制活化傳導(dǎo)信號(hào),。Gαi在pⅠ有絲分裂期與Pon和Numb一起定位于細(xì)胞前部,在 pⅠ分裂后被分配到pⅡb細(xì)胞,。Pin蛋白的GoLoco模體與Gαi結(jié)合,,使Gβγ 與Gαi 解離,并傳導(dǎo)信號(hào)而發(fā)揮作用,。若Gαi與Gβγ 缺失,,細(xì)胞命運(yùn)決定因子Numb不能正確定位,紡錘體不能正確定向,。
pⅡb細(xì)胞分裂軸與pⅠ細(xì)胞分裂軸/表皮細(xì)胞平面垂直,,即呈A-B極性。Insc在pⅡb中出現(xiàn),,并定位于細(xì)胞頂部而決定其A-B極性,。Insc既指導(dǎo)細(xì)胞命運(yùn)決定因子在pⅡb底部定位,又使紡錘體旋轉(zhuǎn)成A-B方向[15],。Baz在pⅡb分裂期亦出現(xiàn)在細(xì)胞頂部,,但Baz在pⅡb中只調(diào)節(jié)Pon/Numb在與其相反的一極即細(xì)胞底部定位,而不參與紡錘體定向[16],。
pⅡa細(xì)胞分裂軸與pⅠ一致,,即仍呈A-P極性,但其極性并非由Fz,,而是由果蠅E-鈣黏素(DE-cadherin)與Catemin蛋白形成的復(fù)合分子調(diào)節(jié),。該復(fù)合體在pⅠ分裂后位于pⅡa與pⅡb的接觸處,即pⅡa的前端,,從而決定pⅡa有絲分裂紡錘體呈A-P方向排列[17],。Baz在pⅡa細(xì)胞中出現(xiàn)在胞體的前端,并指導(dǎo)Pon和Numb在與其相同而不是相對(duì)的一極,,即細(xì)胞的前部定位[16],。
2 果蠅中樞神經(jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂機(jī)制
2.1 成神經(jīng)細(xì)胞的離層與不對(duì)稱(chēng)分裂 果蠅中樞神經(jīng)系統(tǒng)起源于成神經(jīng)細(xì)胞(neuroblast, NB)從神經(jīng)外胚層的離層,。NB從神經(jīng)外胚層離層后,即在其平面下以干細(xì)胞樣分裂方式沿A-B軸不對(duì)稱(chēng)分裂產(chǎn)生一個(gè)位于頂部的較大的NB和一個(gè)位于底部的較小神經(jīng)節(jié)母細(xì)胞(ganglion mother cell, GMC),;GMC沿A-B軸又分裂一次產(chǎn)生兩個(gè)神經(jīng)元或膠質(zhì)細(xì)胞而不再分裂,而NB則以干細(xì)胞樣方式繼續(xù)分裂,。
2.2 成神經(jīng)細(xì)胞極性的建立與維持
離層的NB繼承了神經(jīng)外胚層細(xì)胞的A-B極性,在細(xì)胞頂端皮層有Baz,,DmPAR-6和DaPKC三種蛋白形成的復(fù)合體,。Baz具銜接(adapter)蛋白作用,在NB離層過(guò)程中,,細(xì)胞間期末和有絲分裂前,,Baz與Insc蛋白結(jié)合,使Insc錨定于NB頂端皮層,。Insc 又與其伙伴分子Pin的氨基端結(jié)合,,Pin的羧基端進(jìn)而與G蛋白的α亞單元Gαi結(jié)合,從而在NB頂端皮層形成6分子復(fù)合體,,確立和維持NB的A-B極性,,并調(diào)節(jié)細(xì)胞命運(yùn)決定因子定位和紡錘體定向。6種分子互相依賴(lài),,任一分子的功能缺失或變異,,均會(huì)導(dǎo)致6分子復(fù)合體不能在NB頂部形成與維持和發(fā)揮功能[18~21,14]。
2.3 細(xì)胞命運(yùn)決定因子的不對(duì)稱(chēng)分布 NB的不對(duì)稱(chēng)分裂由內(nèi)在性機(jī)制,,即細(xì)胞命運(yùn)決定因子的不對(duì)稱(chēng)分布決定,。細(xì)胞命運(yùn)決定因子及其銜接蛋白在NB胞質(zhì)分裂前聚集于NB底部皮層形成新月體,其中包括Miranda,,Prospero,prospero mRNA,,Staufen,,Numb和Pon。NB分裂后這些底部分子被分配到GMC[22],。Miranda為銜接蛋白,,是Prospero和Staufen在細(xì)胞底部皮層定位所必需的。Prospero是一種含同源域(homeodomain)的轉(zhuǎn)錄調(diào)節(jié)因子,,可啟動(dòng)GMC特異性基因并關(guān)閉NB特異性基因,,是NB不對(duì)稱(chēng)分裂的決定因子;在GMC中,,Miranda很快被降解,,而Prospero則進(jìn)入胞核內(nèi)調(diào)節(jié)轉(zhuǎn)錄。prospero mRNA并非決定GMC命運(yùn)所必不可少的,,其作用可能是當(dāng)GMC中Prospero蛋白不足時(shí)進(jìn)行翻譯,,以保證GMC中有足夠的Prospero蛋白,,因?yàn)镚MC自身不能轉(zhuǎn)錄prospero mRNA。Staufen是一種RNA結(jié)合蛋白,,其3′UTR可與prospero mRNA結(jié)合,,引導(dǎo)prospero mRNA在NB中的分布。Pon亦為銜接蛋白,,是Numb正確分布所必需的,。值得一提的是,在SOP譜系中Numb是細(xì)胞不對(duì)稱(chēng)分裂的內(nèi)在性決定因子,,而在GMC中,,其作用尚不明確。
細(xì)胞命運(yùn)決定因子在NB中的不對(duì)稱(chēng)分布,,依賴(lài)于頂部決定極性的分子,。頂部分子缺失時(shí),命運(yùn)決定因子不能在細(xì)胞底部定位[18~21],。頂部分子調(diào)節(jié)命運(yùn)決定因子不對(duì)稱(chēng)分布的機(jī)制尚不完全清楚,,已報(bào)道的機(jī)制包括G蛋白活化信號(hào)傳導(dǎo)和腫瘤抑制因子的作用。異三聚體G蛋白通常是與7次跨膜受體偶聯(lián)通過(guò)接受細(xì)胞外信號(hào)而活化,。但在NB,,沒(méi)有7次跨膜分子與G蛋白偶聯(lián),G蛋白是通過(guò)受體非依賴(lài)機(jī)制而活化的:Pin與GDP結(jié)合型Gαi結(jié)合,,使Gβγ 游離而發(fā)揮信號(hào)傳導(dǎo)作用[41],。腫瘤抑制因子Dlg,Scribble(Scrib)和Lethal-giant large(Lgl)亦參與了細(xì)胞命運(yùn)決定因子定位的調(diào)節(jié),。Dlg,,Scrib和Lgl在NB有絲分裂的前期與中期分布于細(xì)胞頂部皮層,為細(xì)胞命運(yùn)決定因子在細(xì)胞底部定位所必需,。Lgl,,Scrib和Dlg功能缺失變異導(dǎo)致Prospero,Miranda,,Numb和Pon等分子不能在NB底部皮層定位[23],。最近一篇報(bào)道指出,頂部極性分子中的aPKC可使Lgl磷酸化,,進(jìn)而調(diào)節(jié)底部分子的定位[39],。
2.4 紡錘體旋轉(zhuǎn)定向與形態(tài)的不對(duì)稱(chēng) NB起源于神經(jīng)上皮,上皮細(xì)胞的分裂在水平平面上,,而NB的分裂卻沿著與水平平面垂直的方向,,故有絲分裂紡錘體必須進(jìn)行90º的旋轉(zhuǎn),成為A-B極性,。用時(shí)相間隔綠色熒光蛋白(GFP)技術(shù)已觀察到了紡錘體在NB有絲分裂中期的這種旋轉(zhuǎn)[24],。紡錘體旋轉(zhuǎn)定向受頂部極性分子的調(diào)節(jié),,任一分子功能缺失均使紡錘體不能正確定向。而Insc是紡錘體正確旋轉(zhuǎn)定向的必需和充分條件:Insc功能缺失使紡錘體不能沿A-B軸定向,;而當(dāng)Insc在上皮細(xì)胞(正常情況下不表達(dá)Insc)中異位表達(dá)時(shí),,上皮細(xì)胞紡錘體亦旋轉(zhuǎn)成A-B方向。頂部極性分子調(diào)節(jié)紡錘體旋轉(zhuǎn)定向的機(jī)制與受體非依賴(lài)性G蛋白活化信號(hào)傳導(dǎo)有關(guān),,即通過(guò)Pin與Gαi結(jié)合使Gβγ 游離而發(fā)揮作用,。Gαi與Gβγ 功能缺失,導(dǎo)致紡錘體不能正確旋轉(zhuǎn)定位 [14],。微管結(jié)合蛋白Cornetto蛋白參與了Insc對(duì)紡錘體定向的調(diào)節(jié),。Cornetto在NB有絲分裂的早期分布于胞質(zhì)中,在晚期和后期分布于頂部皮層并與Insc結(jié)合,。Cornetto既可與Insc結(jié)合,,又可與微管結(jié)合,故可介導(dǎo)Insc對(duì)紡錘體的定向[25],。
NB不對(duì)稱(chēng)分裂時(shí),,不僅命運(yùn)決定因子不對(duì)稱(chēng)分配,胞質(zhì)分裂亦不等(即兩個(gè)子細(xì)胞大小不一),。胞質(zhì)不等分裂(unequal cell division)的原因是紡錘體中體(midbody)位置不居中,,或紡錘體形態(tài)不對(duì)稱(chēng)[24,26]。用綠色熒光蛋白技術(shù)可觀察到在有絲分裂的晚期,,紡錘體頂部一側(cè)的微管比底部一側(cè)的長(zhǎng),,從而使紡錘體中體偏向細(xì)胞底部一側(cè)[24]。因胞質(zhì)分裂溝的位置是由中體的位置決定的,,故使兩個(gè)子細(xì)胞大小不等,。最近有2個(gè)關(guān)于胞質(zhì)不等分裂機(jī)制的報(bào)道,其中一個(gè)指出[27],,紡錘體形態(tài)的不對(duì)稱(chēng)和胞質(zhì)不等分裂由位于頂部皮層的Baz/DaPKC和Pin/Gαi 兩條平行途徑控制,。兩條途徑任一條單獨(dú)作用已足以介導(dǎo)不對(duì)稱(chēng)的紡錘體和大小不等的子代NB,但若兩條途徑均缺失則導(dǎo)致胞質(zhì)對(duì)等分裂,。另一個(gè)報(bào)道指出[28],NB有絲分裂紡錘體形態(tài)的不對(duì)稱(chēng)是由腫瘤抑制基因Lgl,,Scrib和Dlg控制的,。Lgl,Scrib和Dlg變異導(dǎo)致紡錘體頂部變小底部變大,。其結(jié)果是產(chǎn)生一個(gè)較小的NB和一個(gè)較大的GMC,。
2.5 細(xì)胞周期對(duì)細(xì)胞不對(duì)稱(chēng)分裂的調(diào)控 細(xì)胞不對(duì)稱(chēng)分裂時(shí)命運(yùn)決定因子定位和紡錘體定向均與細(xì)胞周期的時(shí)相密切相關(guān),是什么機(jī)制或因子把細(xì)胞周期和細(xì)胞不對(duì)稱(chēng)分裂聯(lián)系在一起的呢,?已有報(bào)道指出[29],,細(xì)胞分裂周期調(diào)控因子Cdc2可調(diào)節(jié)頂部極性分子如Insc在NB中的定位,。盡管Cdc2并不是Insc在NB頂部聚集的始動(dòng)因素,但卻是維持Insc在NB頂部分布所必需的,。Cdc2功能減弱(但并不中斷有絲分裂)時(shí),,正常情況下在細(xì)胞頂部和底部不對(duì)稱(chēng)分布的因子均不能正確定位。
3 脊椎動(dòng)物神經(jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂機(jī)制
3.1 脊椎動(dòng)物中Numb的分布與功能 在小鼠大腦皮層和大鼠視網(wǎng)膜均發(fā)現(xiàn)了與果蠅Numb (D-Numb)同源的分子――哺乳類(lèi)Numb(m-Numb)[30,31],,m-Numb與D-Numb在靠氨基端的一半具有約60%的同源性,,其中包括了PTB域,而羧基端部分不同,。小鼠和大鼠Numb均分布于分裂中神經(jīng)上皮細(xì)胞的頂部皮層,。如細(xì)胞沿A-P軸分裂,兩個(gè)子細(xì)胞均可獲得Numb,;如細(xì)胞沿A-B軸分裂,,則只有頂部子細(xì)胞可獲得Numb。與此不同的是,,在鳥(niǎo)類(lèi)中發(fā)現(xiàn)的Numb同源分子分布于神經(jīng)上皮細(xì)胞底部皮層,,當(dāng)細(xì)胞沿A-B軸分裂時(shí),被分配與位至底部的子細(xì)胞,。
m-Numb在果蠅NB和SOP中表達(dá)時(shí),,亦呈不對(duì)稱(chēng)分布,方式與D-Numb相同,,并可補(bǔ)救內(nèi)源性numb 缺失的表型,。m-Numb在SOP中的過(guò)度表達(dá),導(dǎo)致pⅡa 轉(zhuǎn)變?yōu)閜Ⅱb,,與D-Numb過(guò)度表達(dá)的表型相同[30],。表明細(xì)胞不對(duì)稱(chēng)分裂決定因子在不同物種間有保守性。但Numb在脊椎動(dòng)物中的作用并不像在果蠅中那樣確定,。小鼠神經(jīng)上皮細(xì)胞垂直分裂時(shí),,頂部細(xì)胞獲得Numb并維持神經(jīng)上皮細(xì)胞特性,說(shuō)明Numb有抑制其分化的作用[32],。但在轉(zhuǎn)基因的哺乳類(lèi)神經(jīng)細(xì)胞系中,,numb允許細(xì)胞向神經(jīng)元分化[33]。而在轉(zhuǎn)基因雞中,,numb允許某些神經(jīng)上皮細(xì)胞向神經(jīng)元分化卻又抑制另一些神經(jīng)上皮細(xì)胞向神經(jīng)元分化,。對(duì)這些矛盾現(xiàn)象的可能解釋是Numb在神經(jīng)上皮發(fā)育的不同階段具有不同的作用。
有兩個(gè)小組做了小鼠numb基因敲除實(shí)驗(yàn),。一個(gè)小組發(fā)現(xiàn)numb敲除小鼠比野生型小鼠前腦細(xì)胞較早表達(dá)神經(jīng)元標(biāo)志[32],。而另一組卻得到了相反的發(fā)現(xiàn),即numb敲除小鼠比野生型小鼠的后腦神經(jīng)元分化推遲[34]。但兩個(gè)小組的numb敲除小鼠均在約E11.5時(shí)死于神經(jīng)系統(tǒng)發(fā)育異常,。以上研究說(shuō)明Numb在脊椎動(dòng)物神經(jīng)系統(tǒng)發(fā)育中有重要作用,,但并不能確定Numb在細(xì)胞命運(yùn)決定中起何作用。
最近有一個(gè)小組研究了Numb在小鼠大腦皮層神經(jīng)前體細(xì)胞體外培養(yǎng)中不對(duì)稱(chēng)分裂時(shí)的作用[35],。研究人員對(duì)從胚胎鼠腦皮層分離得到的神經(jīng)前體細(xì)胞在體外的第一次分裂進(jìn)行了觀察研究,。首先發(fā)現(xiàn)神經(jīng)前體細(xì)胞有3種分裂方式:P/P對(duì)稱(chēng)分裂產(chǎn)生2個(gè)子代前體細(xì)胞,P/N不對(duì)稱(chēng)分裂產(chǎn)生1個(gè)子代前體細(xì)胞和1個(gè)神經(jīng)元,,N/N對(duì)稱(chēng)分裂產(chǎn)生2個(gè)神經(jīng)元,。神經(jīng)前體細(xì)胞對(duì)稱(chēng)分裂時(shí),大部分呈Numb對(duì)稱(chēng)分布,,不對(duì)稱(chēng)分裂時(shí),,大部分呈Numb不對(duì)稱(chēng)分布。numb敲除小鼠與野生型小鼠相比,,呈不對(duì)稱(chēng)分裂的細(xì)胞明顯減少,。說(shuō)明Numb可能是導(dǎo)致細(xì)胞不對(duì)稱(chēng)分裂的因子。當(dāng)神經(jīng)前體細(xì)胞進(jìn)行P/N分裂時(shí),,約80%的細(xì)胞呈Numb不對(duì)稱(chēng)分布,,約20%呈對(duì)稱(chēng)分布。在皮層發(fā)育早期階段(E10)分離得到的前體細(xì)胞進(jìn)行不對(duì)稱(chēng)分裂時(shí),,Numb呈對(duì)稱(chēng)分布,;而在晚期階段(E13)分離得到的前體細(xì)胞進(jìn)行不對(duì)稱(chēng)分裂時(shí),Numb呈不對(duì)稱(chēng)分布,。說(shuō)明Numb在神經(jīng)系統(tǒng)發(fā)育的不同階段具有不同的作用,。當(dāng)神經(jīng)前體細(xì)胞進(jìn)行N/N對(duì)稱(chēng)分裂時(shí),Numb在約80%的細(xì)胞呈對(duì)稱(chēng)分布,,在約20%的細(xì)胞呈不對(duì)稱(chēng)分布,。當(dāng)Numb對(duì)稱(chēng)分布時(shí),大部分情況下2個(gè)子細(xì)胞形態(tài)相同/相似,,而當(dāng)Numb不對(duì)稱(chēng)分布時(shí),,多數(shù)情況下2個(gè)子細(xì)胞形態(tài)不同――有Numb的子細(xì)胞神經(jīng)突起較長(zhǎng)。說(shuō)明Numb不對(duì)稱(chēng)分布不僅可影響子代細(xì)胞的種類(lèi)或命運(yùn),,還可影響子代細(xì)胞的亞型或形態(tài),。
3.2 其他同源分子在脊椎動(dòng)物中的作用 PAR蛋白1-6和aPKC首先發(fā)現(xiàn)于線(xiàn)蟲(chóng)胚胎細(xì)胞,是線(xiàn)蟲(chóng)胚胎細(xì)胞極性形成和不對(duì)稱(chēng)分裂所必需的因子,。在果蠅上皮細(xì)胞頂部皮層發(fā)現(xiàn)的線(xiàn)蟲(chóng)PAR-3,,PAR-6和aPKC同源分子Baz,DmPAR-6和DaPKC是維持上皮細(xì)胞A-B極性所必需的,,并在果蠅中樞和周?chē)窠?jīng)系統(tǒng)發(fā)育時(shí)細(xì)胞極性形成與維持和細(xì)胞命運(yùn)決定因子不對(duì)稱(chēng)分布中起著必不可少的作用;在哺乳類(lèi)動(dòng)物細(xì)胞中亦發(fā)現(xiàn)了與線(xiàn)蟲(chóng)PAR-3,PAR-6和aPKC同源的分子:mPAR-3,、mPAR-6和MaPKC,,并亦有維持細(xì)胞極性的作用[36,37],說(shuō)明這些分子在不同種生物間有保守性,。在人類(lèi)和小鼠的神經(jīng)組織和體外培養(yǎng)細(xì)胞中,,mPAR-3,mPAR-6和MaPKC與建立細(xì)胞極性的分子GTP酶Rac1和Cdc42形成復(fù)合體,,或與細(xì)胞粘連連接分子結(jié)合而位于細(xì)胞頂部皮層,,確立和維持細(xì)胞的A-B極性。MaPKC和mPAR-6與哺乳類(lèi)Lgl(m-Lgl)形成多分子復(fù)合體,,MaPKC使m-Lgl磷酸化,,從而調(diào)節(jié)細(xì)胞命運(yùn)決定因子的不對(duì)稱(chēng)分布[40]。
最近,,在小鼠中發(fā)現(xiàn)了果蠅Pin的同源分子,。小鼠Pin與果蠅Pin的氨基酸序列和分子結(jié)構(gòu)非常相似,并在腦室區(qū)細(xì)胞中有高表達(dá),。若使小鼠Pin在果蠅胚胎中表達(dá),,它可定位于NB頂部皮層,并可與Insc結(jié)合,,起果蠅Pin的作用[38],。
4 結(jié)語(yǔ)
果蠅中樞神經(jīng)系統(tǒng)和周?chē)窠?jīng)系統(tǒng)感覺(jué)剛毛分別由NB和SOP經(jīng)細(xì)胞不對(duì)稱(chēng)分裂形成,是研究細(xì)胞不對(duì)稱(chēng)分裂很好的模型,。 在細(xì)胞不對(duì)稱(chēng)分裂前的細(xì)胞間期,,細(xì)胞通過(guò)內(nèi)在和外在機(jī)制建立并維持一定的極性,進(jìn)入有絲分裂期后,,在極性分子的作用下,,細(xì)胞命運(yùn)決定因子在胞體的一側(cè)不對(duì)稱(chēng)分布,同時(shí)紡錘體亦按相應(yīng)的方向旋轉(zhuǎn)/排列,,故在胞質(zhì)分裂后,,兩個(gè)子細(xì)胞獲得不同的"遺贈(zèng)"而具有不同的命運(yùn)或歸宿,。此外,,在NB和SOP譜系pⅡb分裂時(shí),紡錘體的形態(tài)也不對(duì)稱(chēng),,故胞質(zhì)分裂后,,兩個(gè)子細(xì)胞大小亦不相等,。果蠅神經(jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂的大環(huán)節(jié)已經(jīng)明了,但不少細(xì)節(jié)尚需進(jìn)一步研究,,比如細(xì)胞極性分子是如何指導(dǎo)命運(yùn)決定因子不對(duì)稱(chēng)分布和紡錘體定向的,?在命運(yùn)決定因子定位和紡錘體定向中細(xì)胞骨架系統(tǒng)起何作用?命運(yùn)決定因子是如何最終決定細(xì)胞命運(yùn)(調(diào)控基因轉(zhuǎn)錄)的?GMC的分裂是如何調(diào)控的,?已在脊椎動(dòng)物中發(fā)現(xiàn)了果蠅Numb,,Pin和線(xiàn)蟲(chóng)PAR蛋白的同源分子,但這些分子在脊椎動(dòng)物中的作用比較復(fù)雜,,機(jī)制亦未搞清,。在模型生物細(xì)胞不對(duì)稱(chēng)分裂機(jī)制已初步理解的基礎(chǔ)上,今后應(yīng)加強(qiáng)對(duì)脊椎動(dòng)物包括人類(lèi)神經(jīng)系統(tǒng)細(xì)胞不對(duì)稱(chēng)分裂機(jī)制的研究,。
[參考文獻(xiàn)]
[1] Ahringer J. Control of cell polarity and mitotic spindle positioning in animal cells[J]. Curr Opin Cell Biol, 2003, 15(1):73-81.
[2] Cayouette M, Raff M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals[J]. Nat Neurosci, 2002, 5(12):1265-1269.
[3] Gho M, Bellaiche Y, Schweisguth F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell[J]. Development, 1999, 126(16):3573-3584.
[4] Rhyu MS, Jan LY, Jan YN. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells[J]. Cell, 1994, 76(3):477-491.
[5] Wang S, Younger-Shepherd S, Jan LY, et al. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless[J]. Development, 1997, 124(22):4435-4446.
[6] Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch[J]. Neuron, 1996, 17(1):27-41.
[7] Spana EP, Doe CQ. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron[J], 1996, 17(1):21-26.
[8] Berdnik D, Torok T, Gonzalez-Gaitan M, et al. The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila[J]. Dev Cell, 2002, 3(2):221-231.
[9] Guo M, Bier E, Jan LY, et al. tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the Drosophila PNS[J]. Neuron, 1995, 14(5):913-925.
[10] Okabe M, Imai T, Kurusu M, et al. Translational repression determines a neuronal potential in Drosophila asymmetric cell division[J]. Nature, 2001, 411(6833):94-98.
[11] Bellaiche Y, Gho M, Kaltschmidt JA, et al. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division[J]. Nat Cell Biol, 2001, 3(1):50-57.
[12] Bellaiche Y, Radovic A, Woods DF, et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila[J]. Cell, 2001, 106(3):355-366.
[13] Lu B, Usui T, Uemura T, et al. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursor in Drosophila[J]. Curr Biol, 1999, 9(21):1247-1250.
[14] Schaefer M, Petronczki M, Dorner D, et al. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system[J]. Cell, 2001, 107(2):183-194.
[15] Orgogozo V, Schweisguth F, Bellaiche Y. Lineage, cell polarity and inscuteable function in the peripheral nervous system of the Drosophila embryo[J]. Development, 2001, 128(5):631-643.
[16] Roegiers F, Younger-Shepherd S, Jan LY, et al. Bazooka is required for localization of determinants and controlling proliferation in the sensory organ precursor cell lineage in Drosophila[J]. Proc Natl Acad Sci U S A, 2001, 98(25):14469-14474.
[17] Le Borgne R, Bellaiche Y, Schweisguth F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage[J]. Curr Biol, 2002, 12(2):95-104.
[18] Schober M, Schaefer M, Knoblich JA. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts[J]. Nature, 1999, 402(6761):548-551.
[19] Wodarz A, Ramrath A, Grimm A, et al. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts[J]. J Cell Biol, 2000, 150(6):1361-1374.
[20] Petronczki M, Knoblich JA. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila[J]. Nat Cell Biol, 2001, 3(1):43-49.
[21] Yu F, Morin X, Cai Y. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization[J], Cell. 2000, 100(4):399-409.
[22] Schuldt AJ, Adams JH, Davidson CM, et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system[J]. Genes Dev, 1998, 12(12):1847-1857.
[23] Peng CY, Manning L, Albertson R, et al. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts[J]. Nature, 2000, 408(6812):596-600.
[24] Kaltschmidt JA, Davidson CM, Brown NH, et al. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system[J]. Nat Cell Biol, 2000, 2(1):7-12.
[25] Bulgheresi S, Kleiner E, Knoblich JA. Inscuteable-dependent apical localization of the micro- tubule binding protein Cornetto suggests a role in asymmetric cell division[J]. J Cell Sci, 2001, 114(20):3655-3662.
[26] Giansanti MG, Gatti M, Bonaccorsi S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts[J]. Development, 2001, 128(7):1137-1145.
[27] Cai Y, Yu F, Lin S, et al. Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pI asymmetric divisions[J]. Cell, 2003, 112(1):51-62
[28] Albertson R, Doe CQ. Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry[J]. Nat Cell Biol, 2003, 5(2):166-170
[29] Tio M, Udolph G, Yang X, et al. cdc2 links the Drosophila cell cycle and asymmetric division machineries[J]. Nature, 2001, 409(6823):1063-1067.
[30] Zhong W, Feder JN, Jiang MM, et al. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis[J]. Neuron, 1996, 17(1):43-53
[31] Cayouette M, Whitmore AV, Jeffery G, et al. Asymmetric segregation of Numb in retinal development and the influence of the pigmented epithelium[J]. J Neurosci. 2001;21(15):5643-5651.
[32] Zhong W, Jiang MM, Schonemann MD, et al. Mouse numb is an essential gene involved in cortical neurogenesis[J]. Proc Natl Acad Sci U S A, 2000, 97(12):6844-6849.
[33] Verdi JM, Bashirullah A, Goldhawk DE, et al. Distinct human Numb isoforms regulate differentia- tion vs proliferation in the neuronal lineage[J]. Proc Natl Acad Sci U S A, 1999, 96(18):10472-1046.
[34] Zilian O, Saner C, Hagedorn L, et al. Multiple roles of mouse Numb in tuning developmental cell fates[J]. Curr Biol, 2001, 11(7):494-501.
[35] Shen Q, Zhong W, Jan YN, et al. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts[J]. Development, 2002, 129(20):4843-4853.
[36] Lin D, Edwards AS, Fawcett JP, et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity[J]. Nat Cell Biol, 2000, 2(8):540-547.
[37] Takekuni K, Ikeda W, Fujito T, et al. Direct binding of cell polarity protein PAR-3 to cell adhesion molecule nectin at neuroepithelial cells of developing mouse[J]. J Biol Chem, 2003, 278(8):5497-5500
[38] Yu F, Morin X, Kaushik R, et al. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts[J]. J Cell Sci, 2003, 116(Pt5):887-896
[39] Betschinger J, Mechtler K, Knoblich JA. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl[J]. Nature, 2003, 422(6929):326-330
[40] Plant PJ, Fawcett JP, Lin DC, et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl[J]. Nat Cell Biol, 2003, 5(4):301-308.