生物谷援引北京時(shí)間1月10日消息,,據(jù)國(guó)外媒體報(bào)道,,美國(guó)的科學(xué)家們已經(jīng)揭開(kāi)了老鼠怎樣在脊髓受損后恢復(fù)行走能力的奧秘,,他們希望這一認(rèn)識(shí)能為因類似的傷害而癱瘓的人在行走功能恢復(fù)方面開(kāi)辟一種新途徑。
這項(xiàng)1月6日刊登在《自然—醫(yī)學(xué)》(Nature Medicine)雜志上的研究顯示,,老鼠在脊髓受損后,,其大腦和脊髓能夠重組功能,以恢復(fù)行走所需的細(xì)胞一級(jí)的信息傳遞,。據(jù)這群科學(xué)家說(shuō),,在實(shí)驗(yàn)室部分脊髓受損的老鼠經(jīng)過(guò)大約8到10周的時(shí)間能逐漸恢復(fù)行走能力,盡管不如受損前走得好,。
研究人員表示,老鼠的部分脊髓受損后,,即使在沒(méi)有長(zhǎng)長(zhǎng)的,、徑直的神經(jīng)“高速公路”時(shí),其大腦和脊髓經(jīng)歷了一種自然產(chǎn)生的重新連接來(lái)控制走路,,這一條條“高速公路”通常將大腦連接到下肢脊髓中的行走中心,。
洛杉磯加州大學(xué)大衛(wèi)-格芬醫(yī)學(xué)院的神經(jīng)生物學(xué)教授邁克爾-索夫隆尤博士領(lǐng)導(dǎo)了這項(xiàng)研究,他說(shuō):“這不是一個(gè)故事的結(jié)尾,,而是開(kāi)始,。我們已經(jīng)確定了老鼠為什么在脊髓受損后還能恢復(fù)行走功能,,這是我們以前尚未認(rèn)識(shí)到的機(jī)制。我們需要更好地了解這一機(jī)制,,研究怎樣在尋找正確的康復(fù)訓(xùn)練和刺激這種恢復(fù)的方法上更好地利用它,。”
脊髓經(jīng)過(guò)頸部、背部,,包括在大腦和身體其它部分之間傳遞信息的神經(jīng),。脊髓受損,例如車禍,,可導(dǎo)致受損部位以下癱瘓,。到目前為止,還沒(méi)有任何方法治療這種癱瘓,,而且很多科學(xué)家已經(jīng)在尋找治療方法的努力屢屢受挫后感到心灰意冷,。
脊髓受損阻塞了大腦用來(lái)把信息傳遞給控制行走的神經(jīng)細(xì)胞的“高速公路”。專家們?cè)詾?,讓脊髓受損患者恢復(fù)行走唯一的方法就是以某種方式讓連接大腦和脊髓中心的神經(jīng)“高速公路”再生,。但他們?cè)谶@項(xiàng)研究中發(fā)現(xiàn),當(dāng)脊髓受損阻塞大腦徑直傳來(lái)的信號(hào)后,,這些信息能夠繞開(kāi)受損部位,。研究人員表示,沒(méi)有用長(zhǎng)長(zhǎng)的神經(jīng)“高速公路”,,這些信息會(huì)通過(guò)一連串更短的連接進(jìn)行傳遞,,來(lái)傳達(dá)大腦移動(dòng)下肢的指令。
索夫隆尤利用了一種交通類比,。他說(shuō):“如果你面前有一條去某個(gè)地方的高速公路,,那么選它是最快的路線。如果這條‘高速公路’被堵了,,你無(wú)法通過(guò),,一種可供選擇的辦法可能就是繞開(kāi)這條高速公路,走更短的互相連接的輔路,。”
研究人員阻塞了受損脊髓每一側(cè)一半的長(zhǎng)神經(jīng)纖維,,但沒(méi)有打亂脊髓中心,那兒有一連串連接的短神經(jīng)纖維鏈,,沿脊髓上下短距離傳遞信息,。接著,研究人員阻塞了脊髓中心的短神經(jīng)纖維鏈,,結(jié)果再次出現(xiàn)癱瘓,。這證明神經(jīng)系統(tǒng)已利用這些短神經(jīng)纖維鏈改變了信息從大腦傳到脊髓的路線。研究人員表示,現(xiàn)在他們希望弄清怎樣刺激脊髓中心的神經(jīng)細(xì)胞生長(zhǎng)并形成穿過(guò)或繞開(kāi)受損脊髓連接的新“通道”,,從而讓大腦指揮這些細(xì)胞并防止癱瘓,。(來(lái)源:新浪科技 楊孝文)
生物谷推薦原始出處:
Nature Medicine 14, 69 - 74 (2008)
Published online: 6 January 2008 | doi:10.1038/nm1682
Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury
Gregoire Courtine1, Bingbing Song2, Roland R Roy1,3, Hui Zhong1, Julia E Herrmann2, Yan Ao2, Jingwei Qi2, V Reggie Edgerton1,2,3 & Michael V Sofroniew2,3
Spinal cord injuries (SCIs) in humans1, 2 and experimental animals3, 4, 5, 6 are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections4, 7, 8, 9. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.