生物谷報道:來自美國立衛(wèi)生研究院國家神經(jīng)疾病和中風(fēng)研究院(the National Institute of Neurological Disorders and Stroke,,生物谷注),上海交通大學(xué)醫(yī)學(xué)院神經(jīng)學(xué)系等處的研究人員發(fā)現(xiàn)了軸突中線粒體移動性的一個新分子機制,,由于調(diào)控線粒體在軸突上錨定的機制一直以來科學(xué)家們了解得很少,,因此這一研究結(jié)果的突破對于闡明神經(jīng)遞質(zhì)釋放,細胞內(nèi)膜結(jié)構(gòu)轉(zhuǎn)運和突觸可塑性等分子機制具有重要意義,。這一研究成果公布在最新一期的Cell雜志上,。
領(lǐng)導(dǎo)這一研究的是美國立衛(wèi)生研究院的盛祖杭教授,其1987年于上海第二醫(yī)科大學(xué)獲醫(yī)學(xué)碩士學(xué)位,,2000年被聘為上海第二醫(yī)科大學(xué)神經(jīng)生物學(xué)教研室客座教授,,2001年被聘為二醫(yī)大長江講座教授。是二醫(yī)大與美國NIH聯(lián)合培養(yǎng)研究生計劃的主要策劃者和主持人。
神經(jīng)元可以直接或間接(經(jīng)感受器)地從體內(nèi),、外得到信息,,再用傳導(dǎo)興奮的方式把信息沿著長的纖維(突起)作遠距離傳送。信息從一個神經(jīng)元以電傳導(dǎo)或化學(xué)傳遞的方式跨過細胞之間的聯(lián)結(jié)(即突觸),,而傳給另一個神經(jīng)元或效應(yīng)器,,最終產(chǎn)生肌肉的收縮或腺體的分泌,神經(jīng)元還能處理信息,,也能以某種沿尚未清楚的方式存儲信息,。神經(jīng)元通過突觸的連接使數(shù)目眾多的神經(jīng)元組成比其他系統(tǒng)復(fù)雜得多的神經(jīng)系統(tǒng)。神經(jīng)元也和感受器如視,、聽,、嗅、味,、機械和化學(xué)感覺器,,以及和效應(yīng)器如肌肉和腺體等形成突觸連接。高等動物的神經(jīng)元可以分成許多類別,,各類神經(jīng)元乃至各個神經(jīng)元在功能,、大小和形態(tài)等細節(jié)上可有明顯的差別。
神經(jīng)元跨越突觸向另一神經(jīng)元或效應(yīng)器所釋出的神經(jīng)遞質(zhì),,便需先在高爾基體中濃縮包裝在囊泡內(nèi),,然后經(jīng)軸突轉(zhuǎn)送到纖維末梢。線粒體廣泛地分布于神經(jīng)元的各個部分,,在軸突末梢特別豐富,,是神經(jīng)元的能量供應(yīng)中心。
因此線粒體在軸突中的適當(dāng)分布對于神經(jīng)功能而言是至關(guān)重要的,,雖然三分之一的軸突線粒體是可以移動的,,但是大部分依然是保持著不動的狀態(tài)。然而調(diào)控線粒體在軸突上錨定的機制至今了解的并不清楚,。
在這篇文章中,,研究人員發(fā)現(xiàn)了線粒體錨定過程中,軸突靶向Syntaphilin(axon-targeted syntaphilin,,SNPH,,生物谷注)的重要作用——與微管相互作用。syntaphilin是盛教授發(fā)現(xiàn)的三種SNARE結(jié)合蛋白之一(其它兩種分別為Snapin和SNAP-29,,生物谷注),,Syntaphilin的功能就像一個分子夾控制SNARE復(fù)合物裝配中游離的Syntaxin-1的量,從而調(diào)節(jié)突觸囊泡的胞吐,。
軸突中的線粒體如果包含有內(nèi)生性或外生性表達的SNPH,,就會失去移動性,,研究人員將小鼠中snph基因沉默,結(jié)果發(fā)現(xiàn)帶有移動的軸突線粒體性比例增高,,但軸突中總線粒體濃度降低,。進一步研究發(fā)現(xiàn)在延時刺激(prolonged stimulation,生物谷注)過程中snph基因突變的神經(jīng)細胞會表現(xiàn)出短時間facilitation的增強,,這也許是受到突觸前膨體(presynaptic bouton,,生物谷注)中鈣信號的影響。
這項研究發(fā)現(xiàn)了軸突中調(diào)控線粒體穩(wěn)定性的一個新分子機制,,并且這一機制對于神經(jīng)突觸的功能產(chǎn)生了一種生理學(xué)上的影響,。(生物谷援引新華網(wǎng))
生物谷推薦原始出處:
Cell, Vol 132, 137-148, 11 January 2008
Article
Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation
Jian-Sheng Kang,1 Jin-Hua Tian,1,4 Ping-Yue Pan,1,2,4 Philip Zald,1 Cuiling Li,3 Chuxia Deng,3 and Zu-Hang Sheng1, 1 Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 3B203, 35 Convent Drive, Bethesda, MD 20892, USA
2 Department of Neurobiology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
3 Mammalian Genetics Section, Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
Corresponding author
Zu-Hang Sheng
[email protected]
Proper distribution of mitochondria within axons and at synapses is critical for neuronal function. While one-third of axonal mitochondria are mobile, a large proportion remains in a stationary phase. However, the mechanisms controlling mitochondrial docking within axons remain elusive. Here, we report a role for axon-targeted syntaphilin (SNPH) in mitochondrial docking through its interaction with microtubules. Axonal mitochondria that contain exogenously or endogenously expressed SNPH lose mobility. Deletion of the mouse snph gene results in a substantially higher proportion of axonal mitochondria in the mobile state and reduces the density of mitochondria in axons. The snph mutant neurons exhibit enhanced short-term facilitation during prolonged stimulation, probably by affecting calcium signaling at presynaptic boutons. This phenotype is fully rescued by reintroducing the snph gene into the mutant neurons. These findings demonstrate a molecular mechanism for controlling mitochondrial docking in axons that has a physiological impact on synaptic function.