大腦細(xì)胞的異質(zhì)性對于科學(xué)家了解不同神經(jīng)細(xì)胞群體的生物特性是一個很大的障礙,在11月14日出版的《細(xì)胞》(Cell)上,美國的Myriam Heiman等科學(xué)家提出了一種全新的細(xì)胞特異性標(biāo)記技術(shù),,而在本期刊物的另一篇文章中,,Doyle等科學(xué)家利用這一標(biāo)記方法實(shí)現(xiàn)了對腦部特定細(xì)胞群落的分子區(qū)分,。
Heiman等科學(xué)家利用在細(xì)胞群落中表達(dá)EGFP標(biāo)記核糖體蛋白L10a的細(xì)菌人工染色體轉(zhuǎn)基因小鼠,,發(fā)明了一種對大腦中特定細(xì)胞群落的多核糖體mRNA進(jìn)行親和純化的方法。通過對4種不同種類的神經(jīng)元的比較分析,,研究小組發(fā)現(xiàn)了數(shù)以百計(jì)的區(qū)分以上4種細(xì)胞群落的基因,。文章作者表示,即使是兩種在形態(tài)上無法區(qū)分的相互混雜的中型多棘神經(jīng)元,,也在其翻譯模式中存在極大的差異,。科學(xué)家將這種基因標(biāo)記方法稱為翻譯核糖體親和純化(translating ribosome affinity purification TRAP)法,,它是一種能發(fā)現(xiàn)由于基因改變,、疾病或者藥理學(xué)原因?qū)е碌募?xì)胞分子變化的方法。
在另一篇文章中,,美國洛克菲勒大學(xué)的Doyle等人證實(shí)了上述方法的一般性,。比較分析能為科學(xué)家更深入地研究復(fù)雜生物體系提供幫助。研究人員建立了特定細(xì)胞群落的翻譯模式,,文章中作者表示,數(shù)以千計(jì)的細(xì)胞特異性mRNA并不會在整個組織的微陣列分析過程中被去除??茖W(xué)家提出了16個轉(zhuǎn)基因小鼠世系的相應(yīng)中樞神經(jīng)系統(tǒng)結(jié)構(gòu)的解剖學(xué)特征以及翻譯模式,,這些信息對于研究神經(jīng)細(xì)胞將非常有幫助。 (生物谷Bioon.com)
生物谷推薦原始出處:
Cell,,Volume 135, Issue 4, 738-748,,Myriam Heiman,Nathaniel Heintz
A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types
Myriam Heiman1,Anne Schaefer1,Shiaoching Gong2,Jayms D. Peterson5,Michelle Day5,Keri E. Ramsey6,Mayte Suárez-Fari?as4,Cordelia Schwarz3,Dietrich A. Stephan6,D. James Surmeier5,Paul Greengard1andNathaniel Heintz2,3,,
1 Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
2 GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
3 Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
4 The Rockefeller University Hospital, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
5 Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
6 Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
SUMMARY
The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.
Cell,,Volume 135, Issue 4, 749-762,,Joseph P. Doyle,Nathaniel Heintz
Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types
Joseph P. Doyle1,4,Joseph D. Dougherty1,4,Myriam Heiman2,Eric F. Schmidt1,Tanya R. Stevens1,Guojun Ma1,Sujata Bupp1,Prerana Shrestha1,Rajiv D. Shah1,Martin L. Doughty3,Shiaoching Gong1,3,Paul Greengard2andNathaniel Heintz1,3,,
1 Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
2 Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
3 GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
4 These authors contributed equally to this work
SUMMARY
Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands ofcell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and insilico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.