通過將一束激光照進果蠅的大腦,,科學家們從無到有創(chuàng)造出了一些新的記憶,。英國倫敦皇家學院的神經(jīng)科學家Simon Schultz表示,,這是一項“令人驚訝的研究工作”,。
記憶的形成是非常簡單的,,就是對那些很糟糕的并且需要避免的特殊刺激的聯(lián)想,。作為形成這種聯(lián)想的第一步,,英國牛津大學的神經(jīng)科學家Gero Miesenbock和同事對果蠅究竟是喜歡3-辛醇(OCT)還是4-甲基環(huán)己醇(MCH)的氣味進行了研究。接下來,,研究小組在任意一種氣味出現(xiàn)的時候,,對果蠅進行了電擊。自然而然地,,這些果蠅開始逃避與這些氣味有關的電擊,,即便是它們最初喜歡的氣味也是如此。
Miesenbock和同事隨后想要搞清的是,,他們能否在不用電擊的前提下讓果蠅討厭一種氣味,。為了實現(xiàn)這一目標,研究人員向果蠅大腦的不同神經(jīng)回路中注射了一種轉(zhuǎn)基因版本的ATP(細胞能量的一種來源),。這一次,,當果蠅遇到OCT或MCH的氣味時,,研究人員便會向它們的大腦中反射一束激光。這一過程釋放了轉(zhuǎn)基因的ATP,,進而激活了能夠釋放多巴胺——一種被認為能夠在果蠅中形成令人厭惡的記憶的神經(jīng)傳遞素——的神經(jīng)細胞,。毫無疑問,在OCT或MCH氣味存在的情況下,,暴露在激光下的果蠅會開始回避這些氣味,,就像它們被電擊了一樣。
更多的實驗使得研究人員能夠?qū)⑦@種負面強化效果限制在果蠅大腦中的僅僅12個神經(jīng)細胞中,。研究人員在最新出版的《細胞》雜志上報告了這一研究成果,。
Schultz表示,研究人員正在給實驗室小鼠中使用這種激光方法,,因此這些發(fā)現(xiàn)在哺乳動物中進行測試的時間并不會等得太久,。盡管這只是一個遙遠的前景,但Schultz已經(jīng)開始思索這項工作如何對人類產(chǎn)生幫助,。他說:“想象一下,,當你需要記住一些信息時,例如一首莎士比亞的十四行詩,,或你的汽車修理手冊,,或許你可以吃下一粒小藥丸。”(生物谷Bioon.com)
生物谷推薦原始出處:
Cell, Volume 139, Issue 2, 405-415, 16 October 2009 doi:10.1016/j.cell.2009.08.034
Writing Memories with Light-Addressable Reinforcement Circuitry
Adam Claridge-Chang1, 3, Robert D. Roorda1, Eleftheria Vrontou1, Lucas Sjulson1, 4, Haiyan Li2, 5, Jay Hirsh2 and Gero Miesenb?ck1, ,
1 Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
2 Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, VA 22903, USA
3 Present address: Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
4 Present address: Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
5 Present address: Department of Psychiatry, University of California, 401 Parnassus Avenue, San Francisco, CA 94143, USA
Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known. By optically controlling genetically circumscribed subsets of dopaminergic neurons in the behaving fly, we have mapped the origin of aversive reinforcement signals to the PPL1 cluster of 12 dopaminergic cells. PPL1 projections target restricted domains in the vertical lobes and heel of the mushroom body. Artificially evoked activity in a small number of identifiable cells thus suffices for programming behaviorally meaningful memories. The delineation of core reinforcement circuitry is an essential first step in dissecting the neural mechanisms that compute and represent valuations, store associations, and guide actions.